Prove $|f^{(n)}(z_0)|leq Mn!/R^n$, where $|f(z)| = M$
$begingroup$
Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}
where $M$ is the maximum value of $|f(z)|$ in $Gamma$.
Ok, here my attempt:
Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}
taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}
but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}
all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}
Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.
complex-analysis proof-verification
$endgroup$
add a comment |
$begingroup$
Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}
where $M$ is the maximum value of $|f(z)|$ in $Gamma$.
Ok, here my attempt:
Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}
taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}
but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}
all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}
Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.
complex-analysis proof-verification
$endgroup$
$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51
$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08
$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16
add a comment |
$begingroup$
Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}
where $M$ is the maximum value of $|f(z)|$ in $Gamma$.
Ok, here my attempt:
Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}
taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}
but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}
all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}
Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.
complex-analysis proof-verification
$endgroup$
Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}
where $M$ is the maximum value of $|f(z)|$ in $Gamma$.
Ok, here my attempt:
Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}
taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}
but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}
all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}
Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.
complex-analysis proof-verification
complex-analysis proof-verification
asked Jan 13 at 23:45
PatchouliPatchouli
31
31
$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51
$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08
$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16
add a comment |
$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51
$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08
$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16
$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51
$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51
$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08
$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08
$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16
$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint By The Cauchy Integral Formula
$$begin{equation*}
|f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
end{equation*}$$
Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072682%2fprove-fnz-0-leq-mn-rn-where-fz-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint By The Cauchy Integral Formula
$$begin{equation*}
|f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
end{equation*}$$
Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?
$endgroup$
add a comment |
$begingroup$
Hint By The Cauchy Integral Formula
$$begin{equation*}
|f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
end{equation*}$$
Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?
$endgroup$
add a comment |
$begingroup$
Hint By The Cauchy Integral Formula
$$begin{equation*}
|f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
end{equation*}$$
Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?
$endgroup$
Hint By The Cauchy Integral Formula
$$begin{equation*}
|f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
end{equation*}$$
Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?
answered Jan 13 at 23:54
N. S.N. S.
104k7112208
104k7112208
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072682%2fprove-fnz-0-leq-mn-rn-where-fz-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51
$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08
$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16