Prove $|f^{(n)}(z_0)|leq Mn!/R^n$, where $|f(z)| = M$












0












$begingroup$


Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}

where $M$ is the maximum value of $|f(z)|$ in $Gamma$.



Ok, here my attempt:



Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}

taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}

but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}

all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}



Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
    $endgroup$
    – Denis28
    Jan 13 at 23:51












  • $begingroup$
    Read 'Cauchy's estimates' in Rudin's RCA.
    $endgroup$
    – Kavi Rama Murthy
    Jan 14 at 0:08










  • $begingroup$
    @Denis28 Hahaha thanks, I forgot triangle inequality.
    $endgroup$
    – Patchouli
    Jan 14 at 0:16
















0












$begingroup$


Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}

where $M$ is the maximum value of $|f(z)|$ in $Gamma$.



Ok, here my attempt:



Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}

taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}

but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}

all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}



Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
    $endgroup$
    – Denis28
    Jan 13 at 23:51












  • $begingroup$
    Read 'Cauchy's estimates' in Rudin's RCA.
    $endgroup$
    – Kavi Rama Murthy
    Jan 14 at 0:08










  • $begingroup$
    @Denis28 Hahaha thanks, I forgot triangle inequality.
    $endgroup$
    – Patchouli
    Jan 14 at 0:16














0












0








0





$begingroup$


Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}

where $M$ is the maximum value of $|f(z)|$ in $Gamma$.



Ok, here my attempt:



Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}

taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}

but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}

all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}



Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.










share|cite|improve this question









$endgroup$




Given a circunference $Gamma$ with radius $R$ and center $z_0$. Prove that if $f(z)$ is analytic in $Gamma$ and their interior, then
begin{equation*}
|f^{(n)}(z_0)|leq frac{Mn!}{R^n},
end{equation*}

where $M$ is the maximum value of $|f(z)|$ in $Gamma$.



Ok, here my attempt:



Since $f$ is analytic, then by Taylor theorem
begin{equation*}
f(z) = sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,
end{equation*}

taking absolute value we obtain
begin{equation*}
|f(z)| = left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!},
end{equation*}

but, by definition, $Mgeq |f(z)|$ and expanding the summation
begin{equation*}
Mgeq |f^0(z_0)|frac{|z-z_0|^0}{0!}+|f^1(z_0)|frac{|z-z_0|^1}{1!}+cdots+|f^n(z_0)|frac{|z-z_0|^n}{n!}+cdots,
end{equation*}

all terms in the summation are potisives, then if we take only the n-term we can assure that
begin{equation*}
Mgeq |f^{(n)}(z_0)|frac{|z-z_0|^n}{n!}.
end{equation*}



Ok here is my problem, if I say $|z-z_0|^ngeq R^n$, I'm finished, but $|z-z_0|geq R$ is false. So, what did I do wrong?.







complex-analysis proof-verification






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 13 at 23:45









PatchouliPatchouli

31




31












  • $begingroup$
    The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
    $endgroup$
    – Denis28
    Jan 13 at 23:51












  • $begingroup$
    Read 'Cauchy's estimates' in Rudin's RCA.
    $endgroup$
    – Kavi Rama Murthy
    Jan 14 at 0:08










  • $begingroup$
    @Denis28 Hahaha thanks, I forgot triangle inequality.
    $endgroup$
    – Patchouli
    Jan 14 at 0:16


















  • $begingroup$
    The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
    $endgroup$
    – Denis28
    Jan 13 at 23:51












  • $begingroup$
    Read 'Cauchy's estimates' in Rudin's RCA.
    $endgroup$
    – Kavi Rama Murthy
    Jan 14 at 0:08










  • $begingroup$
    @Denis28 Hahaha thanks, I forgot triangle inequality.
    $endgroup$
    – Patchouli
    Jan 14 at 0:16
















$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51






$begingroup$
The expression $left|sum _{n = 0}^{infty}frac{f^{(n)}(z_0)}{n!} (z-z_0)^nright| = sum _{n = 0}^{infty}|f^{(n)}(z_0)|frac{|(z-z_0)^n|}{n!}$ is not always true. This should not be an equality, but an inequality
$endgroup$
– Denis28
Jan 13 at 23:51














$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08




$begingroup$
Read 'Cauchy's estimates' in Rudin's RCA.
$endgroup$
– Kavi Rama Murthy
Jan 14 at 0:08












$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16




$begingroup$
@Denis28 Hahaha thanks, I forgot triangle inequality.
$endgroup$
– Patchouli
Jan 14 at 0:16










1 Answer
1






active

oldest

votes


















1












$begingroup$

Hint By The Cauchy Integral Formula
$$begin{equation*}
|f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
end{equation*}$$



Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072682%2fprove-fnz-0-leq-mn-rn-where-fz-m%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Hint By The Cauchy Integral Formula
    $$begin{equation*}
    |f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
    end{equation*}$$



    Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Hint By The Cauchy Integral Formula
      $$begin{equation*}
      |f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
      end{equation*}$$



      Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Hint By The Cauchy Integral Formula
        $$begin{equation*}
        |f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
        end{equation*}$$



        Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?






        share|cite|improve this answer









        $endgroup$



        Hint By The Cauchy Integral Formula
        $$begin{equation*}
        |f^{(n)}(z_0)|= left| frac{n!}{2 pi i}int_{Gamma} frac{f(z)}{|z-z_0|^{n+1}} dz right| leq frac{n!}{2pi}int_{Gamma} frac{left|f(z)right|}{|z-z_0|^{n+1}} dz
        end{equation*}$$



        Now use $|f(z)| leq M$ on $Gamma$. Also, on $Gamma$ what is $|z-z_0|$?







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 13 at 23:54









        N. S.N. S.

        104k7112208




        104k7112208






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072682%2fprove-fnz-0-leq-mn-rn-where-fz-m%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith