Proving Inequalities Involving Summations and Sq. Roots
$begingroup$
How can I prove that $sum_{i=1}^{n} |a_i| leq sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}}$ considering that $ a_{1}, a_{2}, a_{3}, ... , a_{n} $ are real numbers?
This exercise was presented in a section that also covered Cauchy Schwarz: $ (sum_{i=1}^{n}a_{i}b_{i})^2 leq (sum_{i=1}^{n}a_{i}^2)(sum_{i=1}^{n}b_{i}^2) $ but I am unsure if anything related to Cauchy Schwarz is involved in this proof.
On the RHS, I proceeded with $ sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}} $ = $ sqrt{nsum_{i=1}^{n} a_{i}^{2} } $ but then I'm stuck and unsure how to proceed. Any hints/help in this direction is greatly appreciated.
Thank you!
real-analysis inequality proof-writing cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
How can I prove that $sum_{i=1}^{n} |a_i| leq sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}}$ considering that $ a_{1}, a_{2}, a_{3}, ... , a_{n} $ are real numbers?
This exercise was presented in a section that also covered Cauchy Schwarz: $ (sum_{i=1}^{n}a_{i}b_{i})^2 leq (sum_{i=1}^{n}a_{i}^2)(sum_{i=1}^{n}b_{i}^2) $ but I am unsure if anything related to Cauchy Schwarz is involved in this proof.
On the RHS, I proceeded with $ sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}} $ = $ sqrt{nsum_{i=1}^{n} a_{i}^{2} } $ but then I'm stuck and unsure how to proceed. Any hints/help in this direction is greatly appreciated.
Thank you!
real-analysis inequality proof-writing cauchy-schwarz-inequality
$endgroup$
4
$begingroup$
Write $|a_i| = 1cdot |a_i|$ and apply C-S.
$endgroup$
– Song
Jan 11 at 21:44
add a comment |
$begingroup$
How can I prove that $sum_{i=1}^{n} |a_i| leq sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}}$ considering that $ a_{1}, a_{2}, a_{3}, ... , a_{n} $ are real numbers?
This exercise was presented in a section that also covered Cauchy Schwarz: $ (sum_{i=1}^{n}a_{i}b_{i})^2 leq (sum_{i=1}^{n}a_{i}^2)(sum_{i=1}^{n}b_{i}^2) $ but I am unsure if anything related to Cauchy Schwarz is involved in this proof.
On the RHS, I proceeded with $ sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}} $ = $ sqrt{nsum_{i=1}^{n} a_{i}^{2} } $ but then I'm stuck and unsure how to proceed. Any hints/help in this direction is greatly appreciated.
Thank you!
real-analysis inequality proof-writing cauchy-schwarz-inequality
$endgroup$
How can I prove that $sum_{i=1}^{n} |a_i| leq sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}}$ considering that $ a_{1}, a_{2}, a_{3}, ... , a_{n} $ are real numbers?
This exercise was presented in a section that also covered Cauchy Schwarz: $ (sum_{i=1}^{n}a_{i}b_{i})^2 leq (sum_{i=1}^{n}a_{i}^2)(sum_{i=1}^{n}b_{i}^2) $ but I am unsure if anything related to Cauchy Schwarz is involved in this proof.
On the RHS, I proceeded with $ sqrt{n} sqrt{sum_{i=1}^{n} a_{i}^{2}} $ = $ sqrt{nsum_{i=1}^{n} a_{i}^{2} } $ but then I'm stuck and unsure how to proceed. Any hints/help in this direction is greatly appreciated.
Thank you!
real-analysis inequality proof-writing cauchy-schwarz-inequality
real-analysis inequality proof-writing cauchy-schwarz-inequality
asked Jan 11 at 21:42
Zen'zZen'z
243
243
4
$begingroup$
Write $|a_i| = 1cdot |a_i|$ and apply C-S.
$endgroup$
– Song
Jan 11 at 21:44
add a comment |
4
$begingroup$
Write $|a_i| = 1cdot |a_i|$ and apply C-S.
$endgroup$
– Song
Jan 11 at 21:44
4
4
$begingroup$
Write $|a_i| = 1cdot |a_i|$ and apply C-S.
$endgroup$
– Song
Jan 11 at 21:44
$begingroup$
Write $|a_i| = 1cdot |a_i|$ and apply C-S.
$endgroup$
– Song
Jan 11 at 21:44
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $b_i =1$ for $1le ile n$
Then apply Cauchy Schwartz inequality to $|a_i|$ and your $b_i=1$
You get the result right away upon taking square root of both sides.
$endgroup$
add a comment |
$begingroup$
It's
$$sqrt{(1^2+1^2+...+1^2)(a_1^2+a_2^2+...+a_n^2)}geq$$
$$geqsqrt{1^2cdot a_1^2}+sqrt{1^2cdot a_2^2}+...sqrt{1^2cdot a_n^2}=|a_1|+|a_2|+...+|a_n|.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070373%2fproving-inequalities-involving-summations-and-sq-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $b_i =1$ for $1le ile n$
Then apply Cauchy Schwartz inequality to $|a_i|$ and your $b_i=1$
You get the result right away upon taking square root of both sides.
$endgroup$
add a comment |
$begingroup$
Let $b_i =1$ for $1le ile n$
Then apply Cauchy Schwartz inequality to $|a_i|$ and your $b_i=1$
You get the result right away upon taking square root of both sides.
$endgroup$
add a comment |
$begingroup$
Let $b_i =1$ for $1le ile n$
Then apply Cauchy Schwartz inequality to $|a_i|$ and your $b_i=1$
You get the result right away upon taking square root of both sides.
$endgroup$
Let $b_i =1$ for $1le ile n$
Then apply Cauchy Schwartz inequality to $|a_i|$ and your $b_i=1$
You get the result right away upon taking square root of both sides.
answered Jan 11 at 22:16


Mohammad Riazi-KermaniMohammad Riazi-Kermani
41.6k42061
41.6k42061
add a comment |
add a comment |
$begingroup$
It's
$$sqrt{(1^2+1^2+...+1^2)(a_1^2+a_2^2+...+a_n^2)}geq$$
$$geqsqrt{1^2cdot a_1^2}+sqrt{1^2cdot a_2^2}+...sqrt{1^2cdot a_n^2}=|a_1|+|a_2|+...+|a_n|.$$
$endgroup$
add a comment |
$begingroup$
It's
$$sqrt{(1^2+1^2+...+1^2)(a_1^2+a_2^2+...+a_n^2)}geq$$
$$geqsqrt{1^2cdot a_1^2}+sqrt{1^2cdot a_2^2}+...sqrt{1^2cdot a_n^2}=|a_1|+|a_2|+...+|a_n|.$$
$endgroup$
add a comment |
$begingroup$
It's
$$sqrt{(1^2+1^2+...+1^2)(a_1^2+a_2^2+...+a_n^2)}geq$$
$$geqsqrt{1^2cdot a_1^2}+sqrt{1^2cdot a_2^2}+...sqrt{1^2cdot a_n^2}=|a_1|+|a_2|+...+|a_n|.$$
$endgroup$
It's
$$sqrt{(1^2+1^2+...+1^2)(a_1^2+a_2^2+...+a_n^2)}geq$$
$$geqsqrt{1^2cdot a_1^2}+sqrt{1^2cdot a_2^2}+...sqrt{1^2cdot a_n^2}=|a_1|+|a_2|+...+|a_n|.$$
answered Jan 11 at 22:17
Michael RozenbergMichael Rozenberg
103k1791195
103k1791195
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070373%2fproving-inequalities-involving-summations-and-sq-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Write $|a_i| = 1cdot |a_i|$ and apply C-S.
$endgroup$
– Song
Jan 11 at 21:44