Show that problem and that equality if fulfilled iff a=b












-1












$begingroup$



If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$




I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.



Thanks.










share|cite|improve this question











$endgroup$

















    -1












    $begingroup$



    If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$




    I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.



    Thanks.










    share|cite|improve this question











    $endgroup$















      -1












      -1








      -1





      $begingroup$



      If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$




      I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.



      Thanks.










      share|cite|improve this question











      $endgroup$





      If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$




      I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.



      Thanks.







      real-analysis inequality a.m.-g.m.-inequality cauchy-schwarz-inequality rearrangement-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 18:39









      amWhy

      1




      1










      asked Apr 26 '18 at 22:56









      mariemarie

      407




      407






















          5 Answers
          5






          active

          oldest

          votes


















          2












          $begingroup$

          Hint:   multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            $$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
            by AM-GM. Adding up symmetrically and we are done.






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              First,



              $$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$



              since $a,b>0$ we can deduce



              $$frac{a^3+b^3}{ab}ge a+b$$



              And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get



              $$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$



              And equality iff $a=b$






              share|cite|improve this answer









              $endgroup$





















                1












                $begingroup$

                Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$






                share|cite|improve this answer









                $endgroup$





















                  0












                  $begingroup$

                  $(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.



                  Thus, by Rearrangement we obtain:
                  $$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
                  The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.



                  Also, by C-S we obtain:
                  $$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$






                  share|cite|improve this answer











                  $endgroup$













                    Your Answer





                    StackExchange.ifUsing("editor", function () {
                    return StackExchange.using("mathjaxEditing", function () {
                    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                    });
                    });
                    }, "mathjax-editing");

                    StackExchange.ready(function() {
                    var channelOptions = {
                    tags: "".split(" "),
                    id: "69"
                    };
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function() {
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled) {
                    StackExchange.using("snippets", function() {
                    createEditor();
                    });
                    }
                    else {
                    createEditor();
                    }
                    });

                    function createEditor() {
                    StackExchange.prepareEditor({
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader: {
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    },
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    });


                    }
                    });














                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2755450%2fshow-that-problem-and-that-equality-if-fulfilled-iff-a-b%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown

























                    5 Answers
                    5






                    active

                    oldest

                    votes








                    5 Answers
                    5






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    2












                    $begingroup$

                    Hint:   multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.






                    share|cite|improve this answer









                    $endgroup$


















                      2












                      $begingroup$

                      Hint:   multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.






                      share|cite|improve this answer









                      $endgroup$
















                        2












                        2








                        2





                        $begingroup$

                        Hint:   multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.






                        share|cite|improve this answer









                        $endgroup$



                        Hint:   multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Apr 26 '18 at 22:59









                        dxivdxiv

                        57.8k648101




                        57.8k648101























                            2












                            $begingroup$

                            $$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
                            by AM-GM. Adding up symmetrically and we are done.






                            share|cite|improve this answer









                            $endgroup$


















                              2












                              $begingroup$

                              $$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
                              by AM-GM. Adding up symmetrically and we are done.






                              share|cite|improve this answer









                              $endgroup$
















                                2












                                2








                                2





                                $begingroup$

                                $$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
                                by AM-GM. Adding up symmetrically and we are done.






                                share|cite|improve this answer









                                $endgroup$



                                $$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
                                by AM-GM. Adding up symmetrically and we are done.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Apr 26 '18 at 23:06









                                BAIBAI

                                1,780518




                                1,780518























                                    1












                                    $begingroup$

                                    First,



                                    $$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$



                                    since $a,b>0$ we can deduce



                                    $$frac{a^3+b^3}{ab}ge a+b$$



                                    And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get



                                    $$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$



                                    And equality iff $a=b$






                                    share|cite|improve this answer









                                    $endgroup$


















                                      1












                                      $begingroup$

                                      First,



                                      $$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$



                                      since $a,b>0$ we can deduce



                                      $$frac{a^3+b^3}{ab}ge a+b$$



                                      And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get



                                      $$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$



                                      And equality iff $a=b$






                                      share|cite|improve this answer









                                      $endgroup$
















                                        1












                                        1








                                        1





                                        $begingroup$

                                        First,



                                        $$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$



                                        since $a,b>0$ we can deduce



                                        $$frac{a^3+b^3}{ab}ge a+b$$



                                        And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get



                                        $$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$



                                        And equality iff $a=b$






                                        share|cite|improve this answer









                                        $endgroup$



                                        First,



                                        $$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$



                                        since $a,b>0$ we can deduce



                                        $$frac{a^3+b^3}{ab}ge a+b$$



                                        And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get



                                        $$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$



                                        And equality iff $a=b$







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Apr 26 '18 at 23:06









                                        Daniel Constantin PopescuDaniel Constantin Popescu

                                        46616




                                        46616























                                            1












                                            $begingroup$

                                            Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$






                                            share|cite|improve this answer









                                            $endgroup$


















                                              1












                                              $begingroup$

                                              Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$






                                              share|cite|improve this answer









                                              $endgroup$
















                                                1












                                                1








                                                1





                                                $begingroup$

                                                Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$






                                                share|cite|improve this answer









                                                $endgroup$



                                                Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Apr 26 '18 at 23:24









                                                DeepSeaDeepSea

                                                71.2k54487




                                                71.2k54487























                                                    0












                                                    $begingroup$

                                                    $(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.



                                                    Thus, by Rearrangement we obtain:
                                                    $$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
                                                    The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.



                                                    Also, by C-S we obtain:
                                                    $$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$






                                                    share|cite|improve this answer











                                                    $endgroup$


















                                                      0












                                                      $begingroup$

                                                      $(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.



                                                      Thus, by Rearrangement we obtain:
                                                      $$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
                                                      The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.



                                                      Also, by C-S we obtain:
                                                      $$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$






                                                      share|cite|improve this answer











                                                      $endgroup$
















                                                        0












                                                        0








                                                        0





                                                        $begingroup$

                                                        $(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.



                                                        Thus, by Rearrangement we obtain:
                                                        $$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
                                                        The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.



                                                        Also, by C-S we obtain:
                                                        $$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$






                                                        share|cite|improve this answer











                                                        $endgroup$



                                                        $(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.



                                                        Thus, by Rearrangement we obtain:
                                                        $$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
                                                        The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.



                                                        Also, by C-S we obtain:
                                                        $$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$







                                                        share|cite|improve this answer














                                                        share|cite|improve this answer



                                                        share|cite|improve this answer








                                                        edited Apr 27 '18 at 1:23

























                                                        answered Apr 27 '18 at 1:14









                                                        Michael RozenbergMichael Rozenberg

                                                        103k1891195




                                                        103k1891195






























                                                            draft saved

                                                            draft discarded




















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid



                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.


                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function () {
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2755450%2fshow-that-problem-and-that-equality-if-fulfilled-iff-a-b%23new-answer', 'question_page');
                                                            }
                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown







                                                            Popular posts from this blog

                                                            MongoDB - Not Authorized To Execute Command

                                                            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                                            How to fix TextFormField cause rebuild widget in Flutter