Show that problem and that equality if fulfilled iff a=b
$begingroup$
If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$
I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.
Thanks.
real-analysis inequality a.m.-g.m.-inequality cauchy-schwarz-inequality rearrangement-inequality
$endgroup$
add a comment |
$begingroup$
If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$
I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.
Thanks.
real-analysis inequality a.m.-g.m.-inequality cauchy-schwarz-inequality rearrangement-inequality
$endgroup$
add a comment |
$begingroup$
If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$
I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.
Thanks.
real-analysis inequality a.m.-g.m.-inequality cauchy-schwarz-inequality rearrangement-inequality
$endgroup$
If $a, b >0$, show that $$ frac{a}{b^2} + frac{b}{a^2} geq frac{1}{a} +frac{1}{b},$$ and that equality is fulfilled if and only if $a = b.$
I tried using elementary consequences of order axioms, but I had trouble applying them. If you can explain this to me, it would be great.
Thanks.
real-analysis inequality a.m.-g.m.-inequality cauchy-schwarz-inequality rearrangement-inequality
real-analysis inequality a.m.-g.m.-inequality cauchy-schwarz-inequality rearrangement-inequality
edited Jan 11 at 18:39


amWhy
1
1
asked Apr 26 '18 at 22:56
mariemarie
407
407
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Hint: multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.
$endgroup$
add a comment |
$begingroup$
$$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
by AM-GM. Adding up symmetrically and we are done.
$endgroup$
add a comment |
$begingroup$
First,
$$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$
since $a,b>0$ we can deduce
$$frac{a^3+b^3}{ab}ge a+b$$
And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get
$$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$
And equality iff $a=b$
$endgroup$
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$
$endgroup$
add a comment |
$begingroup$
$(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.
Thus, by Rearrangement we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.
Also, by C-S we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2755450%2fshow-that-problem-and-that-equality-if-fulfilled-iff-a-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.
$endgroup$
add a comment |
$begingroup$
Hint: multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.
$endgroup$
add a comment |
$begingroup$
Hint: multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.
$endgroup$
Hint: multiply by $,a^2b^2 gt 0,$, then $;a^3+b^3 ge ab^2+a^2b iff (a-b)(a^2-b^2) ge 0,$.
answered Apr 26 '18 at 22:59


dxivdxiv
57.8k648101
57.8k648101
add a comment |
add a comment |
$begingroup$
$$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
by AM-GM. Adding up symmetrically and we are done.
$endgroup$
add a comment |
$begingroup$
$$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
by AM-GM. Adding up symmetrically and we are done.
$endgroup$
add a comment |
$begingroup$
$$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
by AM-GM. Adding up symmetrically and we are done.
$endgroup$
$$frac13frac{a}{b^2}+frac23frac{b}{a^2}ge sqrt[3]{frac{1}{a^3}}=frac1a$$
by AM-GM. Adding up symmetrically and we are done.
answered Apr 26 '18 at 23:06


BAIBAI
1,780518
1,780518
add a comment |
add a comment |
$begingroup$
First,
$$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$
since $a,b>0$ we can deduce
$$frac{a^3+b^3}{ab}ge a+b$$
And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get
$$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$
And equality iff $a=b$
$endgroup$
add a comment |
$begingroup$
First,
$$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$
since $a,b>0$ we can deduce
$$frac{a^3+b^3}{ab}ge a+b$$
And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get
$$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$
And equality iff $a=b$
$endgroup$
add a comment |
$begingroup$
First,
$$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$
since $a,b>0$ we can deduce
$$frac{a^3+b^3}{ab}ge a+b$$
And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get
$$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$
And equality iff $a=b$
$endgroup$
First,
$$frac{a}{b^2} + frac{b}{a^2}=frac{a^3+b^3}{a^2b^2}ge frac{a+b}{ab}$$
since $a,b>0$ we can deduce
$$frac{a^3+b^3}{ab}ge a+b$$
And since $(a+b)(a^2-ab+b^2)=a^3+b^3$ we get
$$a^2-ab+b^2ge abLeftrightarrow (a-b)^2ge 0$$
And equality iff $a=b$
answered Apr 26 '18 at 23:06
Daniel Constantin PopescuDaniel Constantin Popescu
46616
46616
add a comment |
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$
$endgroup$
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$
$endgroup$
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$
$endgroup$
Using Cauchy-Schwarz inequality, we have: $left(dfrac{1}{a}+dfrac{1}{b}right)^2= left(dfrac{sqrt{b}}{a}cdot dfrac{1}{sqrt{b}}+dfrac{sqrt{a}}{b}cdot dfrac{1}{sqrt{a}}right)^2le left(dfrac{b}{a^2}+dfrac{a}{b^2}right)left(dfrac{1}{b}+dfrac{1}{a}right)implies dfrac{1}{a}+dfrac{1}{b}le dfrac{a}{b^2}+dfrac{b}{a^2}$
answered Apr 26 '18 at 23:24


DeepSeaDeepSea
71.2k54487
71.2k54487
add a comment |
add a comment |
$begingroup$
$(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.
Thus, by Rearrangement we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.
Also, by C-S we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$
$endgroup$
add a comment |
$begingroup$
$(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.
Thus, by Rearrangement we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.
Also, by C-S we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$
$endgroup$
add a comment |
$begingroup$
$(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.
Thus, by Rearrangement we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.
Also, by C-S we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$
$endgroup$
$(a,b)$ and $left(frac{1}{a^2},frac{1}{b^2}right)$ they are opposite ordered.
Thus, by Rearrangement we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=acdotfrac{1}{b^2}+bcdotfrac{1}{a^2}geq acdotfrac{1}{a^2}+bcdotfrac{1}{b^2}=frac{1}{a}+frac{1}{b}.$$
The equality occurs iff $left(frac{1}{a^2},frac{1}{b^2}right)=left(frac{1}{b^2},frac{1}{a^2}right)$, id est, for $a=b$.
Also, by C-S we obtain:
$$frac{a}{b^2}+frac{b}{a^2}=frac{a^2}{ab^2}+frac{b^2}{ba^2}geqfrac{(a+b)^2}{ab^2+ba^2}=frac{1}{a}+frac{1}{b}.$$
edited Apr 27 '18 at 1:23
answered Apr 27 '18 at 1:14
Michael RozenbergMichael Rozenberg
103k1891195
103k1891195
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2755450%2fshow-that-problem-and-that-equality-if-fulfilled-iff-a-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown