Solve $(x+1)^n=(x-1)^n$, assuming $x$ is a complex number and $n>0$.
$begingroup$
How do I solve $(x+1)^n=(x-1)^n$?
I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
How do I solve it using Moivre's n-th root theorem?
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
How do I solve $(x+1)^n=(x-1)^n$?
I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
How do I solve it using Moivre's n-th root theorem?
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
How do I solve $(x+1)^n=(x-1)^n$?
I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
How do I solve it using Moivre's n-th root theorem?
algebra-precalculus
$endgroup$
How do I solve $(x+1)^n=(x-1)^n$?
I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
How do I solve it using Moivre's n-th root theorem?
algebra-precalculus
algebra-precalculus
edited Jul 2 '15 at 18:01
Sloan
2,1301718
2,1301718
asked Jul 2 '15 at 17:56


Franciele DaltoéFranciele Daltoé
271210
271210
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Your equation is equivalent to
$$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
$$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$
$endgroup$
$begingroup$
There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
$endgroup$
– Mark Viola
Jul 2 '15 at 20:00
$begingroup$
@Dr.MV: you are right, now fixed, thanks.
$endgroup$
– Jack D'Aurizio
Jul 2 '15 at 20:02
$begingroup$
Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
$endgroup$
– Mark Viola
Jul 2 '15 at 20:03
$begingroup$
@FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
$endgroup$
– Jack D'Aurizio
Jul 3 '15 at 14:53
$begingroup$
Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
$endgroup$
– Franciele Daltoé
Jul 3 '15 at 14:58
|
show 2 more comments
$begingroup$
Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:
$$left(frac{x + 1}{x - 1} right)^n = 1$$
It boils down to just listing the $n$th roots of $1$ and computing $x$.
$endgroup$
$begingroup$
Why can I equal this equation to 1?
$endgroup$
– Franciele Daltoé
Jul 2 '15 at 18:03
1
$begingroup$
@FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
$endgroup$
– user230734
Jul 2 '15 at 18:03
add a comment |
$begingroup$
For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that
$$z=w^{1/n}e^{i2 pi ell/n}$$
for $ell =0, 1, 2,cdots n-1.$
Now for $z=x+1$ and $w=(x-1)^n$ we have that
$$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$
$endgroup$
$begingroup$
@FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
$endgroup$
– Mark Viola
Jul 11 '15 at 4:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1347267%2fsolve-x1n-x-1n-assuming-x-is-a-complex-number-and-n0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your equation is equivalent to
$$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
$$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$
$endgroup$
$begingroup$
There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
$endgroup$
– Mark Viola
Jul 2 '15 at 20:00
$begingroup$
@Dr.MV: you are right, now fixed, thanks.
$endgroup$
– Jack D'Aurizio
Jul 2 '15 at 20:02
$begingroup$
Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
$endgroup$
– Mark Viola
Jul 2 '15 at 20:03
$begingroup$
@FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
$endgroup$
– Jack D'Aurizio
Jul 3 '15 at 14:53
$begingroup$
Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
$endgroup$
– Franciele Daltoé
Jul 3 '15 at 14:58
|
show 2 more comments
$begingroup$
Your equation is equivalent to
$$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
$$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$
$endgroup$
$begingroup$
There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
$endgroup$
– Mark Viola
Jul 2 '15 at 20:00
$begingroup$
@Dr.MV: you are right, now fixed, thanks.
$endgroup$
– Jack D'Aurizio
Jul 2 '15 at 20:02
$begingroup$
Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
$endgroup$
– Mark Viola
Jul 2 '15 at 20:03
$begingroup$
@FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
$endgroup$
– Jack D'Aurizio
Jul 3 '15 at 14:53
$begingroup$
Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
$endgroup$
– Franciele Daltoé
Jul 3 '15 at 14:58
|
show 2 more comments
$begingroup$
Your equation is equivalent to
$$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
$$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$
$endgroup$
Your equation is equivalent to
$$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
$$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$
edited Jul 2 '15 at 20:02
answered Jul 2 '15 at 18:02


Jack D'AurizioJack D'Aurizio
290k33282662
290k33282662
$begingroup$
There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
$endgroup$
– Mark Viola
Jul 2 '15 at 20:00
$begingroup$
@Dr.MV: you are right, now fixed, thanks.
$endgroup$
– Jack D'Aurizio
Jul 2 '15 at 20:02
$begingroup$
Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
$endgroup$
– Mark Viola
Jul 2 '15 at 20:03
$begingroup$
@FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
$endgroup$
– Jack D'Aurizio
Jul 3 '15 at 14:53
$begingroup$
Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
$endgroup$
– Franciele Daltoé
Jul 3 '15 at 14:58
|
show 2 more comments
$begingroup$
There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
$endgroup$
– Mark Viola
Jul 2 '15 at 20:00
$begingroup$
@Dr.MV: you are right, now fixed, thanks.
$endgroup$
– Jack D'Aurizio
Jul 2 '15 at 20:02
$begingroup$
Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
$endgroup$
– Mark Viola
Jul 2 '15 at 20:03
$begingroup$
@FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
$endgroup$
– Jack D'Aurizio
Jul 3 '15 at 14:53
$begingroup$
Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
$endgroup$
– Franciele Daltoé
Jul 3 '15 at 14:58
$begingroup$
There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
$endgroup$
– Mark Viola
Jul 2 '15 at 20:00
$begingroup$
There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
$endgroup$
– Mark Viola
Jul 2 '15 at 20:00
$begingroup$
@Dr.MV: you are right, now fixed, thanks.
$endgroup$
– Jack D'Aurizio
Jul 2 '15 at 20:02
$begingroup$
@Dr.MV: you are right, now fixed, thanks.
$endgroup$
– Jack D'Aurizio
Jul 2 '15 at 20:02
$begingroup$
Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
$endgroup$
– Mark Viola
Jul 2 '15 at 20:03
$begingroup$
Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
$endgroup$
– Mark Viola
Jul 2 '15 at 20:03
$begingroup$
@FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
$endgroup$
– Jack D'Aurizio
Jul 3 '15 at 14:53
$begingroup$
@FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
$endgroup$
– Jack D'Aurizio
Jul 3 '15 at 14:53
$begingroup$
Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
$endgroup$
– Franciele Daltoé
Jul 3 '15 at 14:58
$begingroup$
Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
$endgroup$
– Franciele Daltoé
Jul 3 '15 at 14:58
|
show 2 more comments
$begingroup$
Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:
$$left(frac{x + 1}{x - 1} right)^n = 1$$
It boils down to just listing the $n$th roots of $1$ and computing $x$.
$endgroup$
$begingroup$
Why can I equal this equation to 1?
$endgroup$
– Franciele Daltoé
Jul 2 '15 at 18:03
1
$begingroup$
@FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
$endgroup$
– user230734
Jul 2 '15 at 18:03
add a comment |
$begingroup$
Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:
$$left(frac{x + 1}{x - 1} right)^n = 1$$
It boils down to just listing the $n$th roots of $1$ and computing $x$.
$endgroup$
$begingroup$
Why can I equal this equation to 1?
$endgroup$
– Franciele Daltoé
Jul 2 '15 at 18:03
1
$begingroup$
@FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
$endgroup$
– user230734
Jul 2 '15 at 18:03
add a comment |
$begingroup$
Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:
$$left(frac{x + 1}{x - 1} right)^n = 1$$
It boils down to just listing the $n$th roots of $1$ and computing $x$.
$endgroup$
Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:
$$left(frac{x + 1}{x - 1} right)^n = 1$$
It boils down to just listing the $n$th roots of $1$ and computing $x$.
answered Jul 2 '15 at 17:59
user230734
$begingroup$
Why can I equal this equation to 1?
$endgroup$
– Franciele Daltoé
Jul 2 '15 at 18:03
1
$begingroup$
@FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
$endgroup$
– user230734
Jul 2 '15 at 18:03
add a comment |
$begingroup$
Why can I equal this equation to 1?
$endgroup$
– Franciele Daltoé
Jul 2 '15 at 18:03
1
$begingroup$
@FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
$endgroup$
– user230734
Jul 2 '15 at 18:03
$begingroup$
Why can I equal this equation to 1?
$endgroup$
– Franciele Daltoé
Jul 2 '15 at 18:03
$begingroup$
Why can I equal this equation to 1?
$endgroup$
– Franciele Daltoé
Jul 2 '15 at 18:03
1
1
$begingroup$
@FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
$endgroup$
– user230734
Jul 2 '15 at 18:03
$begingroup$
@FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
$endgroup$
– user230734
Jul 2 '15 at 18:03
add a comment |
$begingroup$
For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that
$$z=w^{1/n}e^{i2 pi ell/n}$$
for $ell =0, 1, 2,cdots n-1.$
Now for $z=x+1$ and $w=(x-1)^n$ we have that
$$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$
$endgroup$
$begingroup$
@FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
$endgroup$
– Mark Viola
Jul 11 '15 at 4:16
add a comment |
$begingroup$
For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that
$$z=w^{1/n}e^{i2 pi ell/n}$$
for $ell =0, 1, 2,cdots n-1.$
Now for $z=x+1$ and $w=(x-1)^n$ we have that
$$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$
$endgroup$
$begingroup$
@FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
$endgroup$
– Mark Viola
Jul 11 '15 at 4:16
add a comment |
$begingroup$
For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that
$$z=w^{1/n}e^{i2 pi ell/n}$$
for $ell =0, 1, 2,cdots n-1.$
Now for $z=x+1$ and $w=(x-1)^n$ we have that
$$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$
$endgroup$
For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that
$$z=w^{1/n}e^{i2 pi ell/n}$$
for $ell =0, 1, 2,cdots n-1.$
Now for $z=x+1$ and $w=(x-1)^n$ we have that
$$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$
answered Jul 2 '15 at 18:48
Mark ViolaMark Viola
132k1276174
132k1276174
$begingroup$
@FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
$endgroup$
– Mark Viola
Jul 11 '15 at 4:16
add a comment |
$begingroup$
@FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
$endgroup$
– Mark Viola
Jul 11 '15 at 4:16
$begingroup$
@FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
$endgroup$
– Mark Viola
Jul 11 '15 at 4:16
$begingroup$
@FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
$endgroup$
– Mark Viola
Jul 11 '15 at 4:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1347267%2fsolve-x1n-x-1n-assuming-x-is-a-complex-number-and-n0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown