Solve $(x+1)^n=(x-1)^n$, assuming $x$ is a complex number and $n>0$.












3












$begingroup$


How do I solve $(x+1)^n=(x-1)^n$?
I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
How do I solve it using Moivre's n-th root theorem?










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    How do I solve $(x+1)^n=(x-1)^n$?
    I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
    How do I solve it using Moivre's n-th root theorem?










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      How do I solve $(x+1)^n=(x-1)^n$?
      I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
      How do I solve it using Moivre's n-th root theorem?










      share|cite|improve this question











      $endgroup$




      How do I solve $(x+1)^n=(x-1)^n$?
      I assumed $x=a+bi$, getting the equation $((a+1)+bi)^n=((a-1)+bi)^n$.
      How do I solve it using Moivre's n-th root theorem?







      algebra-precalculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jul 2 '15 at 18:01









      Sloan

      2,1301718




      2,1301718










      asked Jul 2 '15 at 17:56









      Franciele DaltoéFranciele Daltoé

      271210




      271210






















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          Your equation is equivalent to
          $$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
          and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
          $$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:00












          • $begingroup$
            @Dr.MV: you are right, now fixed, thanks.
            $endgroup$
            – Jack D'Aurizio
            Jul 2 '15 at 20:02










          • $begingroup$
            Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:03












          • $begingroup$
            @FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
            $endgroup$
            – Jack D'Aurizio
            Jul 3 '15 at 14:53










          • $begingroup$
            Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
            $endgroup$
            – Franciele Daltoé
            Jul 3 '15 at 14:58



















          8












          $begingroup$

          Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:



          $$left(frac{x + 1}{x - 1} right)^n = 1$$



          It boils down to just listing the $n$th roots of $1$ and computing $x$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why can I equal this equation to 1?
            $endgroup$
            – Franciele Daltoé
            Jul 2 '15 at 18:03






          • 1




            $begingroup$
            @FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
            $endgroup$
            – user230734
            Jul 2 '15 at 18:03





















          2












          $begingroup$

          For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that



          $$z=w^{1/n}e^{i2 pi ell/n}$$



          for $ell =0, 1, 2,cdots n-1.$





          Now for $z=x+1$ and $w=(x-1)^n$ we have that



          $$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            @FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
            $endgroup$
            – Mark Viola
            Jul 11 '15 at 4:16











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1347267%2fsolve-x1n-x-1n-assuming-x-is-a-complex-number-and-n0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          Your equation is equivalent to
          $$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
          and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
          $$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:00












          • $begingroup$
            @Dr.MV: you are right, now fixed, thanks.
            $endgroup$
            – Jack D'Aurizio
            Jul 2 '15 at 20:02










          • $begingroup$
            Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:03












          • $begingroup$
            @FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
            $endgroup$
            – Jack D'Aurizio
            Jul 3 '15 at 14:53










          • $begingroup$
            Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
            $endgroup$
            – Franciele Daltoé
            Jul 3 '15 at 14:58
















          7












          $begingroup$

          Your equation is equivalent to
          $$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
          and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
          $$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:00












          • $begingroup$
            @Dr.MV: you are right, now fixed, thanks.
            $endgroup$
            – Jack D'Aurizio
            Jul 2 '15 at 20:02










          • $begingroup$
            Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:03












          • $begingroup$
            @FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
            $endgroup$
            – Jack D'Aurizio
            Jul 3 '15 at 14:53










          • $begingroup$
            Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
            $endgroup$
            – Franciele Daltoé
            Jul 3 '15 at 14:58














          7












          7








          7





          $begingroup$

          Your equation is equivalent to
          $$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
          and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
          $$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$






          share|cite|improve this answer











          $endgroup$



          Your equation is equivalent to
          $$ left(frac{x+1}{x-1}right)^n = 1 tag{1}$$
          and since the inverse function of $f(x)=frac{x+1}{x-1}$ is given by $frac{y-1}{y+1}$, we have:
          $$ x = frac{expfrac{2pi k i}{n}+1}{expfrac{2pi k i}{n}-1}=-icotfrac{pi k}{n},qquad kinleft[1,ldots,n-1right].tag{2}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 2 '15 at 20:02

























          answered Jul 2 '15 at 18:02









          Jack D'AurizioJack D'Aurizio

          290k33282662




          290k33282662












          • $begingroup$
            There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:00












          • $begingroup$
            @Dr.MV: you are right, now fixed, thanks.
            $endgroup$
            – Jack D'Aurizio
            Jul 2 '15 at 20:02










          • $begingroup$
            Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:03












          • $begingroup$
            @FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
            $endgroup$
            – Jack D'Aurizio
            Jul 3 '15 at 14:53










          • $begingroup$
            Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
            $endgroup$
            – Franciele Daltoé
            Jul 3 '15 at 14:58


















          • $begingroup$
            There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:00












          • $begingroup$
            @Dr.MV: you are right, now fixed, thanks.
            $endgroup$
            – Jack D'Aurizio
            Jul 2 '15 at 20:02










          • $begingroup$
            Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
            $endgroup$
            – Mark Viola
            Jul 2 '15 at 20:03












          • $begingroup$
            @FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
            $endgroup$
            – Jack D'Aurizio
            Jul 3 '15 at 14:53










          • $begingroup$
            Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
            $endgroup$
            – Franciele Daltoé
            Jul 3 '15 at 14:58
















          $begingroup$
          There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
          $endgroup$
          – Mark Viola
          Jul 2 '15 at 20:00






          $begingroup$
          There seems to be a sign error for odd $n$. For example, for $n=3$, one root given by $(2)$ is $x=itan(pi/3)$. Then, $frac{x+1}{x-1}=frac{itan(pi/3)+1}{itan(pi/3)-1}=frac{cos(pi/3)+isin(pi/3)}{-cos(pi/3)+isin(pi/3)}=-e^{2pi/3}$ and $left(-e^{2pi/3}right)^3=-1ne 1$.
          $endgroup$
          – Mark Viola
          Jul 2 '15 at 20:00














          $begingroup$
          @Dr.MV: you are right, now fixed, thanks.
          $endgroup$
          – Jack D'Aurizio
          Jul 2 '15 at 20:02




          $begingroup$
          @Dr.MV: you are right, now fixed, thanks.
          $endgroup$
          – Jack D'Aurizio
          Jul 2 '15 at 20:02












          $begingroup$
          Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
          $endgroup$
          – Mark Viola
          Jul 2 '15 at 20:03






          $begingroup$
          Glad the comment was useful! It is interesting that there were 4 up votes before the edit. ;-))
          $endgroup$
          – Mark Viola
          Jul 2 '15 at 20:03














          $begingroup$
          @FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
          $endgroup$
          – Jack D'Aurizio
          Jul 3 '15 at 14:53




          $begingroup$
          @FrancieleDaltoé: so you have to solve $y^n=1$, then $frac{z+1}{z-1}=y$, that is exactly what I did.
          $endgroup$
          – Jack D'Aurizio
          Jul 3 '15 at 14:53












          $begingroup$
          Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
          $endgroup$
          – Franciele Daltoé
          Jul 3 '15 at 14:58




          $begingroup$
          Is there any simples way to solve it? I need to use basic concepts of complex numbers. I wrote: $(z+1)^n=(z-1)^n leftrightarrow frac{(z+1)^n}{(z-1)^n}=frac{(z-1)^n}{(z-1)^n}=1 leftrightarrow left (frac{z+1}{z-1}right)^n=1 leftrightarrow sqrt[n]{left (frac{z+1}{z-1}right)^n}=sqrt[n]{1}$ What do I do from there? I thought I'd write $frac{z+1}{z-1}=x$ and then solve $x^n=1=(cos(2kpi)+isin(2kpi))$, but I'm not sure how to do that.
          $endgroup$
          – Franciele Daltoé
          Jul 3 '15 at 14:58











          8












          $begingroup$

          Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:



          $$left(frac{x + 1}{x - 1} right)^n = 1$$



          It boils down to just listing the $n$th roots of $1$ and computing $x$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why can I equal this equation to 1?
            $endgroup$
            – Franciele Daltoé
            Jul 2 '15 at 18:03






          • 1




            $begingroup$
            @FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
            $endgroup$
            – user230734
            Jul 2 '15 at 18:03


















          8












          $begingroup$

          Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:



          $$left(frac{x + 1}{x - 1} right)^n = 1$$



          It boils down to just listing the $n$th roots of $1$ and computing $x$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why can I equal this equation to 1?
            $endgroup$
            – Franciele Daltoé
            Jul 2 '15 at 18:03






          • 1




            $begingroup$
            @FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
            $endgroup$
            – user230734
            Jul 2 '15 at 18:03
















          8












          8








          8





          $begingroup$

          Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:



          $$left(frac{x + 1}{x - 1} right)^n = 1$$



          It boils down to just listing the $n$th roots of $1$ and computing $x$.






          share|cite|improve this answer









          $endgroup$



          Hint: $x = 1$ is not a solution, so we might assume $x neq 1$ and re-write this as:



          $$left(frac{x + 1}{x - 1} right)^n = 1$$



          It boils down to just listing the $n$th roots of $1$ and computing $x$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jul 2 '15 at 17:59







          user230734



















          • $begingroup$
            Why can I equal this equation to 1?
            $endgroup$
            – Franciele Daltoé
            Jul 2 '15 at 18:03






          • 1




            $begingroup$
            @FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
            $endgroup$
            – user230734
            Jul 2 '15 at 18:03




















          • $begingroup$
            Why can I equal this equation to 1?
            $endgroup$
            – Franciele Daltoé
            Jul 2 '15 at 18:03






          • 1




            $begingroup$
            @FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
            $endgroup$
            – user230734
            Jul 2 '15 at 18:03


















          $begingroup$
          Why can I equal this equation to 1?
          $endgroup$
          – Franciele Daltoé
          Jul 2 '15 at 18:03




          $begingroup$
          Why can I equal this equation to 1?
          $endgroup$
          – Franciele Daltoé
          Jul 2 '15 at 18:03




          1




          1




          $begingroup$
          @FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
          $endgroup$
          – user230734
          Jul 2 '15 at 18:03






          $begingroup$
          @FrancieleDaltoé: by diving both sides of the initial equation by $(x -1)^n$.
          $endgroup$
          – user230734
          Jul 2 '15 at 18:03













          2












          $begingroup$

          For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that



          $$z=w^{1/n}e^{i2 pi ell/n}$$



          for $ell =0, 1, 2,cdots n-1.$





          Now for $z=x+1$ and $w=(x-1)^n$ we have that



          $$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            @FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
            $endgroup$
            – Mark Viola
            Jul 11 '15 at 4:16
















          2












          $begingroup$

          For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that



          $$z=w^{1/n}e^{i2 pi ell/n}$$



          for $ell =0, 1, 2,cdots n-1.$





          Now for $z=x+1$ and $w=(x-1)^n$ we have that



          $$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            @FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
            $endgroup$
            – Mark Viola
            Jul 11 '15 at 4:16














          2












          2








          2





          $begingroup$

          For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that



          $$z=w^{1/n}e^{i2 pi ell/n}$$



          for $ell =0, 1, 2,cdots n-1.$





          Now for $z=x+1$ and $w=(x-1)^n$ we have that



          $$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$






          share|cite|improve this answer









          $endgroup$



          For $z^n=w$, one can write $w=we^{i2 pi ell}$ for integer $ell$. Then, solving for $z$ reveals that



          $$z=w^{1/n}e^{i2 pi ell/n}$$



          for $ell =0, 1, 2,cdots n-1.$





          Now for $z=x+1$ and $w=(x-1)^n$ we have that



          $$x+1=(x-1)e^{i2 pi ell/n} implies x = frac{e^{i2 pi ell/n}+1}{e^{i2 pi ell/n}-1}=-icot{piell/n},,text{for},,ell =1,2,cdots n-1$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jul 2 '15 at 18:48









          Mark ViolaMark Viola

          132k1276174




          132k1276174












          • $begingroup$
            @FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
            $endgroup$
            – Mark Viola
            Jul 11 '15 at 4:16


















          • $begingroup$
            @FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
            $endgroup$
            – Mark Viola
            Jul 11 '15 at 4:16
















          $begingroup$
          @FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
          $endgroup$
          – Mark Viola
          Jul 11 '15 at 4:16




          $begingroup$
          @FrancieleDaltoe Please let me know how I can improve my answer, which was the first correct answer posted. I really want to give the best answer I can.
          $endgroup$
          – Mark Viola
          Jul 11 '15 at 4:16


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1347267%2fsolve-x1n-x-1n-assuming-x-is-a-complex-number-and-n0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith