The nth term of the maclaurin sequence of $frac 1{1+x+x^2}$
$begingroup$
$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$
I wanted to simplify the last expression to an expression with a single $sum$.
So I tried substituting a few terms.
$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$
Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?
sequences-and-series combinatorics binomial-coefficients euler-maclaurin
$endgroup$
add a comment |
$begingroup$
$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$
I wanted to simplify the last expression to an expression with a single $sum$.
So I tried substituting a few terms.
$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$
Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?
sequences-and-series combinatorics binomial-coefficients euler-maclaurin
$endgroup$
1
$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33
add a comment |
$begingroup$
$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$
I wanted to simplify the last expression to an expression with a single $sum$.
So I tried substituting a few terms.
$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$
Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?
sequences-and-series combinatorics binomial-coefficients euler-maclaurin
$endgroup$
$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$
I wanted to simplify the last expression to an expression with a single $sum$.
So I tried substituting a few terms.
$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$
Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?
sequences-and-series combinatorics binomial-coefficients euler-maclaurin
sequences-and-series combinatorics binomial-coefficients euler-maclaurin
asked Jan 12 at 13:29


KYHSGeekCodeKYHSGeekCode
334112
334112
1
$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33
add a comment |
1
$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33
1
1
$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33
$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?
$endgroup$
1
$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070895%2fthe-nth-term-of-the-maclaurin-sequence-of-frac-11xx2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?
$endgroup$
1
$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47
add a comment |
$begingroup$
Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?
$endgroup$
1
$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47
add a comment |
$begingroup$
Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?
$endgroup$
Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?
edited Jan 12 at 13:43
answered Jan 12 at 13:36


Robert ZRobert Z
97.1k1066137
97.1k1066137
1
$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47
add a comment |
1
$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47
1
1
$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47
$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070895%2fthe-nth-term-of-the-maclaurin-sequence-of-frac-11xx2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33