The nth term of the maclaurin sequence of $frac 1{1+x+x^2}$












4












$begingroup$


$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$



I wanted to simplify the last expression to an expression with a single $sum$.



So I tried substituting a few terms.



$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$



Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    See also math.stackexchange.com/questions/3053514/… for a proof.
    $endgroup$
    – Mike Earnest
    Jan 12 at 18:33
















4












$begingroup$


$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$



I wanted to simplify the last expression to an expression with a single $sum$.



So I tried substituting a few terms.



$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$



Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    See also math.stackexchange.com/questions/3053514/… for a proof.
    $endgroup$
    – Mike Earnest
    Jan 12 at 18:33














4












4








4


0



$begingroup$


$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$



I wanted to simplify the last expression to an expression with a single $sum$.



So I tried substituting a few terms.



$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$



Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?










share|cite|improve this question









$endgroup$




$$frac 1{1+x+x^2}$$
$$ = sum^infty_{n=0} {(-1)}^n{(x+x^2)}^n$$
$$ = sum^infty_{n=0}{(-x)}^n sum^n_{k=0} {_nC_k}x^k$$
$$ = sum^infty_{n=0}sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$$



I wanted to simplify the last expression to an expression with a single $sum$.



So I tried substituting a few terms.



$$begin{align}
tag{n=6} sum^3_{k=0}{(-1)}^{6-k}{_{6-k}C_k} = 1 \
tag{n=7} sum^3_{k=0}{(-1)}^{7-k}{_{7-k}C_k} = -1 \
tag{n=8} sum^4_{k=0}{(-1)}^{8-k}{_{8-k}C_k} = 0 \
tag{n=9} sum^4_{k=0}{(-1)}^{9-k}{_{9-k}C_k} = 1 \
end{align} $$



Then, is there any generic simplified form of $sum^{[frac n2]}_{k=0}{(-1)}^{n-k}{_{n-k}C_k}x^n$?







sequences-and-series combinatorics binomial-coefficients euler-maclaurin






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 12 at 13:29









KYHSGeekCodeKYHSGeekCode

334112




334112








  • 1




    $begingroup$
    See also math.stackexchange.com/questions/3053514/… for a proof.
    $endgroup$
    – Mike Earnest
    Jan 12 at 18:33














  • 1




    $begingroup$
    See also math.stackexchange.com/questions/3053514/… for a proof.
    $endgroup$
    – Mike Earnest
    Jan 12 at 18:33








1




1




$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33




$begingroup$
See also math.stackexchange.com/questions/3053514/… for a proof.
$endgroup$
– Mike Earnest
Jan 12 at 18:33










1 Answer
1






active

oldest

votes


















10












$begingroup$

Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Of course, You are a genius!!!! Thank you
    $endgroup$
    – KYHSGeekCode
    Jan 12 at 13:47











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070895%2fthe-nth-term-of-the-maclaurin-sequence-of-frac-11xx2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









10












$begingroup$

Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Of course, You are a genius!!!! Thank you
    $endgroup$
    – KYHSGeekCode
    Jan 12 at 13:47
















10












$begingroup$

Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Of course, You are a genius!!!! Thank you
    $endgroup$
    – KYHSGeekCode
    Jan 12 at 13:47














10












10








10





$begingroup$

Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?






share|cite|improve this answer











$endgroup$



Hint for a simpler approach. Note that for $|x|<1$,
$$frac{1}{1+x+x^2}=frac{1-x}{1-x^3}=(1-x)sum_{k=0}^{infty} x^{3k}.$$
Can you take it from here?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 12 at 13:43

























answered Jan 12 at 13:36









Robert ZRobert Z

97.1k1066137




97.1k1066137








  • 1




    $begingroup$
    Of course, You are a genius!!!! Thank you
    $endgroup$
    – KYHSGeekCode
    Jan 12 at 13:47














  • 1




    $begingroup$
    Of course, You are a genius!!!! Thank you
    $endgroup$
    – KYHSGeekCode
    Jan 12 at 13:47








1




1




$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47




$begingroup$
Of course, You are a genius!!!! Thank you
$endgroup$
– KYHSGeekCode
Jan 12 at 13:47


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070895%2fthe-nth-term-of-the-maclaurin-sequence-of-frac-11xx2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

Npm cannot find a required file even through it is in the searched directory