Use Residue Theorem to Sum Series
$begingroup$
Show that
$$sum_{n=- infty}^{infty} frac{1}{(3n-1)^2} = frac{4 pi^2}{27}$$
I'm pretty sure I need to use the Residue Theorem to sum the series, but I'm unsure how to apply it. Here's what I know:
- There is a double pole at $3n-1=0 Rightarrow n= frac{1}{3}$
- $sum_{n=-infty}^{infty} f(n) = -sum$ of the resides of $ pi cot( pi z) cdot f(z)$ at the pole(s) of $f(z)$
Using the above information, here's what I've done to calculate the residue at $z= frac{1}{3}$ so far:
$$ frac{1}{(2-1)!}lim_{ztofrac{1}{3}} Bigg[ frac{d^{2-1}}{dz^{2-1}} Bigg((z- frac{1}{3}) pi cot( pi z) frac{1}{{(3z-1)}^2} Bigg) Bigg]$$
$$= Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} pi cot (pi z)Bigg) Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} frac{z-frac{1}{3}}{(3z-1)^2}Bigg) $$
$$= Bigg( lim_{ztofrac{1}{3}} {- pi^2 csc({pi z})} Bigg) Bigg( lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}Bigg)$$
But
$$lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}= infty$$
I know I've gone wrong somewhere (maybe when I split it up into two limits?), but I'm not sure where. Any help or guidance would be greatly appreciated. Thank you!!
sequences-and-series complex-analysis residue-calculus
$endgroup$
add a comment |
$begingroup$
Show that
$$sum_{n=- infty}^{infty} frac{1}{(3n-1)^2} = frac{4 pi^2}{27}$$
I'm pretty sure I need to use the Residue Theorem to sum the series, but I'm unsure how to apply it. Here's what I know:
- There is a double pole at $3n-1=0 Rightarrow n= frac{1}{3}$
- $sum_{n=-infty}^{infty} f(n) = -sum$ of the resides of $ pi cot( pi z) cdot f(z)$ at the pole(s) of $f(z)$
Using the above information, here's what I've done to calculate the residue at $z= frac{1}{3}$ so far:
$$ frac{1}{(2-1)!}lim_{ztofrac{1}{3}} Bigg[ frac{d^{2-1}}{dz^{2-1}} Bigg((z- frac{1}{3}) pi cot( pi z) frac{1}{{(3z-1)}^2} Bigg) Bigg]$$
$$= Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} pi cot (pi z)Bigg) Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} frac{z-frac{1}{3}}{(3z-1)^2}Bigg) $$
$$= Bigg( lim_{ztofrac{1}{3}} {- pi^2 csc({pi z})} Bigg) Bigg( lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}Bigg)$$
But
$$lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}= infty$$
I know I've gone wrong somewhere (maybe when I split it up into two limits?), but I'm not sure where. Any help or guidance would be greatly appreciated. Thank you!!
sequences-and-series complex-analysis residue-calculus
$endgroup$
$begingroup$
At a pole $z_0$ of $g$ of order $k > 0$, you need $$biggl(frac{d}{dz}biggr)^{k-1}bigl( (z - z_0)^kcdot g(z)bigr).$$ You used $(z - z_0)^1$ instead.
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:12
1
$begingroup$
But, for this series, you can have it easier. For $n > 1$, you get $frac{1}{2^2},, frac{1}{5^2},, frac{1}{8^2},,dotsc$, and for $n leqslant 0$ you get $frac{1}{(-1)^2},, frac{1}{(-4)^2},, frac{1}{(-7)^2},,dotsc$. Since $(-(3k+1))^2 = (3k+1)^2$, if you add, what's the difference to $sum_{m = 1}^{infty} frac{1}{m^2} = zeta(2)$?
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:15
$begingroup$
@DanielFischer Got it. Silly mistake. Thanks for your help!
$endgroup$
– user26535
May 18 '16 at 19:28
$begingroup$
This question was already asked earlier yesterday o the day before. You don't need complex theory to solve this, yet you need, at least with my method, to know that $$sum_{n=1}^inftyfrac1{n^2}=frac{pi^2}6$$
$endgroup$
– DonAntonio
May 19 '16 at 21:45
add a comment |
$begingroup$
Show that
$$sum_{n=- infty}^{infty} frac{1}{(3n-1)^2} = frac{4 pi^2}{27}$$
I'm pretty sure I need to use the Residue Theorem to sum the series, but I'm unsure how to apply it. Here's what I know:
- There is a double pole at $3n-1=0 Rightarrow n= frac{1}{3}$
- $sum_{n=-infty}^{infty} f(n) = -sum$ of the resides of $ pi cot( pi z) cdot f(z)$ at the pole(s) of $f(z)$
Using the above information, here's what I've done to calculate the residue at $z= frac{1}{3}$ so far:
$$ frac{1}{(2-1)!}lim_{ztofrac{1}{3}} Bigg[ frac{d^{2-1}}{dz^{2-1}} Bigg((z- frac{1}{3}) pi cot( pi z) frac{1}{{(3z-1)}^2} Bigg) Bigg]$$
$$= Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} pi cot (pi z)Bigg) Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} frac{z-frac{1}{3}}{(3z-1)^2}Bigg) $$
$$= Bigg( lim_{ztofrac{1}{3}} {- pi^2 csc({pi z})} Bigg) Bigg( lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}Bigg)$$
But
$$lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}= infty$$
I know I've gone wrong somewhere (maybe when I split it up into two limits?), but I'm not sure where. Any help or guidance would be greatly appreciated. Thank you!!
sequences-and-series complex-analysis residue-calculus
$endgroup$
Show that
$$sum_{n=- infty}^{infty} frac{1}{(3n-1)^2} = frac{4 pi^2}{27}$$
I'm pretty sure I need to use the Residue Theorem to sum the series, but I'm unsure how to apply it. Here's what I know:
- There is a double pole at $3n-1=0 Rightarrow n= frac{1}{3}$
- $sum_{n=-infty}^{infty} f(n) = -sum$ of the resides of $ pi cot( pi z) cdot f(z)$ at the pole(s) of $f(z)$
Using the above information, here's what I've done to calculate the residue at $z= frac{1}{3}$ so far:
$$ frac{1}{(2-1)!}lim_{ztofrac{1}{3}} Bigg[ frac{d^{2-1}}{dz^{2-1}} Bigg((z- frac{1}{3}) pi cot( pi z) frac{1}{{(3z-1)}^2} Bigg) Bigg]$$
$$= Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} pi cot (pi z)Bigg) Bigg(lim_{ztofrac{1}{3}} frac{d}{dz} frac{z-frac{1}{3}}{(3z-1)^2}Bigg) $$
$$= Bigg( lim_{ztofrac{1}{3}} {- pi^2 csc({pi z})} Bigg) Bigg( lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}Bigg)$$
But
$$lim_{ztofrac{1}{3}} frac{1}{(3z-1)^2}= infty$$
I know I've gone wrong somewhere (maybe when I split it up into two limits?), but I'm not sure where. Any help or guidance would be greatly appreciated. Thank you!!
sequences-and-series complex-analysis residue-calculus
sequences-and-series complex-analysis residue-calculus
asked May 18 '16 at 19:08
user26535user26535
212
212
$begingroup$
At a pole $z_0$ of $g$ of order $k > 0$, you need $$biggl(frac{d}{dz}biggr)^{k-1}bigl( (z - z_0)^kcdot g(z)bigr).$$ You used $(z - z_0)^1$ instead.
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:12
1
$begingroup$
But, for this series, you can have it easier. For $n > 1$, you get $frac{1}{2^2},, frac{1}{5^2},, frac{1}{8^2},,dotsc$, and for $n leqslant 0$ you get $frac{1}{(-1)^2},, frac{1}{(-4)^2},, frac{1}{(-7)^2},,dotsc$. Since $(-(3k+1))^2 = (3k+1)^2$, if you add, what's the difference to $sum_{m = 1}^{infty} frac{1}{m^2} = zeta(2)$?
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:15
$begingroup$
@DanielFischer Got it. Silly mistake. Thanks for your help!
$endgroup$
– user26535
May 18 '16 at 19:28
$begingroup$
This question was already asked earlier yesterday o the day before. You don't need complex theory to solve this, yet you need, at least with my method, to know that $$sum_{n=1}^inftyfrac1{n^2}=frac{pi^2}6$$
$endgroup$
– DonAntonio
May 19 '16 at 21:45
add a comment |
$begingroup$
At a pole $z_0$ of $g$ of order $k > 0$, you need $$biggl(frac{d}{dz}biggr)^{k-1}bigl( (z - z_0)^kcdot g(z)bigr).$$ You used $(z - z_0)^1$ instead.
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:12
1
$begingroup$
But, for this series, you can have it easier. For $n > 1$, you get $frac{1}{2^2},, frac{1}{5^2},, frac{1}{8^2},,dotsc$, and for $n leqslant 0$ you get $frac{1}{(-1)^2},, frac{1}{(-4)^2},, frac{1}{(-7)^2},,dotsc$. Since $(-(3k+1))^2 = (3k+1)^2$, if you add, what's the difference to $sum_{m = 1}^{infty} frac{1}{m^2} = zeta(2)$?
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:15
$begingroup$
@DanielFischer Got it. Silly mistake. Thanks for your help!
$endgroup$
– user26535
May 18 '16 at 19:28
$begingroup$
This question was already asked earlier yesterday o the day before. You don't need complex theory to solve this, yet you need, at least with my method, to know that $$sum_{n=1}^inftyfrac1{n^2}=frac{pi^2}6$$
$endgroup$
– DonAntonio
May 19 '16 at 21:45
$begingroup$
At a pole $z_0$ of $g$ of order $k > 0$, you need $$biggl(frac{d}{dz}biggr)^{k-1}bigl( (z - z_0)^kcdot g(z)bigr).$$ You used $(z - z_0)^1$ instead.
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:12
$begingroup$
At a pole $z_0$ of $g$ of order $k > 0$, you need $$biggl(frac{d}{dz}biggr)^{k-1}bigl( (z - z_0)^kcdot g(z)bigr).$$ You used $(z - z_0)^1$ instead.
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:12
1
1
$begingroup$
But, for this series, you can have it easier. For $n > 1$, you get $frac{1}{2^2},, frac{1}{5^2},, frac{1}{8^2},,dotsc$, and for $n leqslant 0$ you get $frac{1}{(-1)^2},, frac{1}{(-4)^2},, frac{1}{(-7)^2},,dotsc$. Since $(-(3k+1))^2 = (3k+1)^2$, if you add, what's the difference to $sum_{m = 1}^{infty} frac{1}{m^2} = zeta(2)$?
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:15
$begingroup$
But, for this series, you can have it easier. For $n > 1$, you get $frac{1}{2^2},, frac{1}{5^2},, frac{1}{8^2},,dotsc$, and for $n leqslant 0$ you get $frac{1}{(-1)^2},, frac{1}{(-4)^2},, frac{1}{(-7)^2},,dotsc$. Since $(-(3k+1))^2 = (3k+1)^2$, if you add, what's the difference to $sum_{m = 1}^{infty} frac{1}{m^2} = zeta(2)$?
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:15
$begingroup$
@DanielFischer Got it. Silly mistake. Thanks for your help!
$endgroup$
– user26535
May 18 '16 at 19:28
$begingroup$
@DanielFischer Got it. Silly mistake. Thanks for your help!
$endgroup$
– user26535
May 18 '16 at 19:28
$begingroup$
This question was already asked earlier yesterday o the day before. You don't need complex theory to solve this, yet you need, at least with my method, to know that $$sum_{n=1}^inftyfrac1{n^2}=frac{pi^2}6$$
$endgroup$
– DonAntonio
May 19 '16 at 21:45
$begingroup$
This question was already asked earlier yesterday o the day before. You don't need complex theory to solve this, yet you need, at least with my method, to know that $$sum_{n=1}^inftyfrac1{n^2}=frac{pi^2}6$$
$endgroup$
– DonAntonio
May 19 '16 at 21:45
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your sum $$sum_{n=-infty}^{infty}frac{1}{(3n-1)^2}$$ is no different from $$sum_{n=1}^{infty}frac{1}{n^2}-sum_{n=1}^{infty}frac{1}{(3n)^2}.$$ Now using user26535 $zeta(2)=frac{pi^2}{6}$ we can gather that your sum is the same as $(1-frac{1}{9})frac{pi^2}{6}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1790783%2fuse-residue-theorem-to-sum-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your sum $$sum_{n=-infty}^{infty}frac{1}{(3n-1)^2}$$ is no different from $$sum_{n=1}^{infty}frac{1}{n^2}-sum_{n=1}^{infty}frac{1}{(3n)^2}.$$ Now using user26535 $zeta(2)=frac{pi^2}{6}$ we can gather that your sum is the same as $(1-frac{1}{9})frac{pi^2}{6}$.
$endgroup$
add a comment |
$begingroup$
Your sum $$sum_{n=-infty}^{infty}frac{1}{(3n-1)^2}$$ is no different from $$sum_{n=1}^{infty}frac{1}{n^2}-sum_{n=1}^{infty}frac{1}{(3n)^2}.$$ Now using user26535 $zeta(2)=frac{pi^2}{6}$ we can gather that your sum is the same as $(1-frac{1}{9})frac{pi^2}{6}$.
$endgroup$
add a comment |
$begingroup$
Your sum $$sum_{n=-infty}^{infty}frac{1}{(3n-1)^2}$$ is no different from $$sum_{n=1}^{infty}frac{1}{n^2}-sum_{n=1}^{infty}frac{1}{(3n)^2}.$$ Now using user26535 $zeta(2)=frac{pi^2}{6}$ we can gather that your sum is the same as $(1-frac{1}{9})frac{pi^2}{6}$.
$endgroup$
Your sum $$sum_{n=-infty}^{infty}frac{1}{(3n-1)^2}$$ is no different from $$sum_{n=1}^{infty}frac{1}{n^2}-sum_{n=1}^{infty}frac{1}{(3n)^2}.$$ Now using user26535 $zeta(2)=frac{pi^2}{6}$ we can gather that your sum is the same as $(1-frac{1}{9})frac{pi^2}{6}$.
answered Oct 20 '17 at 10:51
Boon OngBoon Ong
11
11
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1790783%2fuse-residue-theorem-to-sum-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
At a pole $z_0$ of $g$ of order $k > 0$, you need $$biggl(frac{d}{dz}biggr)^{k-1}bigl( (z - z_0)^kcdot g(z)bigr).$$ You used $(z - z_0)^1$ instead.
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:12
1
$begingroup$
But, for this series, you can have it easier. For $n > 1$, you get $frac{1}{2^2},, frac{1}{5^2},, frac{1}{8^2},,dotsc$, and for $n leqslant 0$ you get $frac{1}{(-1)^2},, frac{1}{(-4)^2},, frac{1}{(-7)^2},,dotsc$. Since $(-(3k+1))^2 = (3k+1)^2$, if you add, what's the difference to $sum_{m = 1}^{infty} frac{1}{m^2} = zeta(2)$?
$endgroup$
– Daniel Fischer♦
May 18 '16 at 19:15
$begingroup$
@DanielFischer Got it. Silly mistake. Thanks for your help!
$endgroup$
– user26535
May 18 '16 at 19:28
$begingroup$
This question was already asked earlier yesterday o the day before. You don't need complex theory to solve this, yet you need, at least with my method, to know that $$sum_{n=1}^inftyfrac1{n^2}=frac{pi^2}6$$
$endgroup$
– DonAntonio
May 19 '16 at 21:45