Why is $int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{A}e^{-xy}sin{x}dlambda(x)$
$begingroup$
Let $A:= bigcup_{k=0}^{infty}[2kpi,(2k+1)pi]$.
I do not understand why the following holds, it was written in our textbook
$int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{A}e^{-xy}sin{x}dlambda(x)$
Even reducing it to $int_{[0,2pi[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{[0,2pi[}e^{-xy}sin{x}dlambda(x)$
All I can note is that $e^{-xy}$ is decreasing for a fixed $y$ as $x to infty$
and on $[pi,2pi]$where $sin{x} leq 0$ it is hard to see why $e^{-xy}|sin{x}|leq2e^{-xy}sin{x}$
Surely this cannot be true?
real-analysis integration measure-theory multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $A:= bigcup_{k=0}^{infty}[2kpi,(2k+1)pi]$.
I do not understand why the following holds, it was written in our textbook
$int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{A}e^{-xy}sin{x}dlambda(x)$
Even reducing it to $int_{[0,2pi[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{[0,2pi[}e^{-xy}sin{x}dlambda(x)$
All I can note is that $e^{-xy}$ is decreasing for a fixed $y$ as $x to infty$
and on $[pi,2pi]$where $sin{x} leq 0$ it is hard to see why $e^{-xy}|sin{x}|leq2e^{-xy}sin{x}$
Surely this cannot be true?
real-analysis integration measure-theory multivariable-calculus
$endgroup$
$begingroup$
Can you prove that $int_0^{2 pi} e^{-xy}|sin y| , dy le 2 int_0^pi e^{-xy} sin y , dy$?
$endgroup$
– Hans Engler
Jan 10 at 21:48
$begingroup$
The problem is unfortunately stated by using $lambda(x)dx$ rather than simply $dx$. In an extreme case $lambda(A)=0$ making the right hand side $=0$, but having a positive value for the left side with $lambda(A')ne 0$.
$endgroup$
– herb steinberg
Jan 10 at 23:36
add a comment |
$begingroup$
Let $A:= bigcup_{k=0}^{infty}[2kpi,(2k+1)pi]$.
I do not understand why the following holds, it was written in our textbook
$int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{A}e^{-xy}sin{x}dlambda(x)$
Even reducing it to $int_{[0,2pi[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{[0,2pi[}e^{-xy}sin{x}dlambda(x)$
All I can note is that $e^{-xy}$ is decreasing for a fixed $y$ as $x to infty$
and on $[pi,2pi]$where $sin{x} leq 0$ it is hard to see why $e^{-xy}|sin{x}|leq2e^{-xy}sin{x}$
Surely this cannot be true?
real-analysis integration measure-theory multivariable-calculus
$endgroup$
Let $A:= bigcup_{k=0}^{infty}[2kpi,(2k+1)pi]$.
I do not understand why the following holds, it was written in our textbook
$int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{A}e^{-xy}sin{x}dlambda(x)$
Even reducing it to $int_{[0,2pi[}e^{-xy}|sin{x}|dlambda(x) leq 2int_{[0,2pi[}e^{-xy}sin{x}dlambda(x)$
All I can note is that $e^{-xy}$ is decreasing for a fixed $y$ as $x to infty$
and on $[pi,2pi]$where $sin{x} leq 0$ it is hard to see why $e^{-xy}|sin{x}|leq2e^{-xy}sin{x}$
Surely this cannot be true?
real-analysis integration measure-theory multivariable-calculus
real-analysis integration measure-theory multivariable-calculus
asked Jan 10 at 21:27
MinaThumaMinaThuma
1108
1108
$begingroup$
Can you prove that $int_0^{2 pi} e^{-xy}|sin y| , dy le 2 int_0^pi e^{-xy} sin y , dy$?
$endgroup$
– Hans Engler
Jan 10 at 21:48
$begingroup$
The problem is unfortunately stated by using $lambda(x)dx$ rather than simply $dx$. In an extreme case $lambda(A)=0$ making the right hand side $=0$, but having a positive value for the left side with $lambda(A')ne 0$.
$endgroup$
– herb steinberg
Jan 10 at 23:36
add a comment |
$begingroup$
Can you prove that $int_0^{2 pi} e^{-xy}|sin y| , dy le 2 int_0^pi e^{-xy} sin y , dy$?
$endgroup$
– Hans Engler
Jan 10 at 21:48
$begingroup$
The problem is unfortunately stated by using $lambda(x)dx$ rather than simply $dx$. In an extreme case $lambda(A)=0$ making the right hand side $=0$, but having a positive value for the left side with $lambda(A')ne 0$.
$endgroup$
– herb steinberg
Jan 10 at 23:36
$begingroup$
Can you prove that $int_0^{2 pi} e^{-xy}|sin y| , dy le 2 int_0^pi e^{-xy} sin y , dy$?
$endgroup$
– Hans Engler
Jan 10 at 21:48
$begingroup$
Can you prove that $int_0^{2 pi} e^{-xy}|sin y| , dy le 2 int_0^pi e^{-xy} sin y , dy$?
$endgroup$
– Hans Engler
Jan 10 at 21:48
$begingroup$
The problem is unfortunately stated by using $lambda(x)dx$ rather than simply $dx$. In an extreme case $lambda(A)=0$ making the right hand side $=0$, but having a positive value for the left side with $lambda(A')ne 0$.
$endgroup$
– herb steinberg
Jan 10 at 23:36
$begingroup$
The problem is unfortunately stated by using $lambda(x)dx$ rather than simply $dx$. In an extreme case $lambda(A)=0$ making the right hand side $=0$, but having a positive value for the left side with $lambda(A')ne 0$.
$endgroup$
– herb steinberg
Jan 10 at 23:36
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $I_k =[(2k+1)pi,(2k+2)pi]$ and $J_k =[2kpi,(2k+1)pi]$. Then we have
$$begin{eqnarray}
int_{I_k} e^{-xy}|sin{x}|dlambda(x) &=&int_{J_k} e^{-(x+pi)y}|sin(x+pi)|dlambda(x)\
&=&int_{J_k} e^{-(x+pi)y}sin(x)dlambda(x)\
&le&int_{J_k} e^{-xy}sin(x)dlambda(x).
end{eqnarray}$$ Thus we have
$$begin{eqnarray}
int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x)&=&sum_{kge 0}left[int_{I_k} e^{-xy}|sin{x}|dlambda(x)+int_{J_k} e^{-xy}|sin{x}|dlambda(x)right]\
&le&2sum_{kge 0}int_{J_k} e^{-xy}sin{x}dlambda(x)\
&=&2int_{bigcup_{kge 0} J_k} e^{-xy}sin{x}dlambda(x)=2int_{A} e^{-xy}sin{x}dlambda(x).
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
You need to compare $I=int_0^{pi}e^{-xy}|sinx|dlambda(x)$ with $J=int_{pi}^{2pi}e^{-xy}|sinx|dlambda(x)$ Because of the exponential term, $Jlt I$. (Note the same comparison holds for each interval of length $2pi$). The right side of your inequality is made up of terms like $2I$, while the left side is made up of terms like $I+J$, so the left side is smaller for all $ygt 0$.
I suppose if $lambda(x)$ was weird enough, you could get equality.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069190%2fwhy-is-int-0-inftye-xy-sinxd-lambdax-leq-2-int-ae-xy-sinx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $I_k =[(2k+1)pi,(2k+2)pi]$ and $J_k =[2kpi,(2k+1)pi]$. Then we have
$$begin{eqnarray}
int_{I_k} e^{-xy}|sin{x}|dlambda(x) &=&int_{J_k} e^{-(x+pi)y}|sin(x+pi)|dlambda(x)\
&=&int_{J_k} e^{-(x+pi)y}sin(x)dlambda(x)\
&le&int_{J_k} e^{-xy}sin(x)dlambda(x).
end{eqnarray}$$ Thus we have
$$begin{eqnarray}
int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x)&=&sum_{kge 0}left[int_{I_k} e^{-xy}|sin{x}|dlambda(x)+int_{J_k} e^{-xy}|sin{x}|dlambda(x)right]\
&le&2sum_{kge 0}int_{J_k} e^{-xy}sin{x}dlambda(x)\
&=&2int_{bigcup_{kge 0} J_k} e^{-xy}sin{x}dlambda(x)=2int_{A} e^{-xy}sin{x}dlambda(x).
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Let $I_k =[(2k+1)pi,(2k+2)pi]$ and $J_k =[2kpi,(2k+1)pi]$. Then we have
$$begin{eqnarray}
int_{I_k} e^{-xy}|sin{x}|dlambda(x) &=&int_{J_k} e^{-(x+pi)y}|sin(x+pi)|dlambda(x)\
&=&int_{J_k} e^{-(x+pi)y}sin(x)dlambda(x)\
&le&int_{J_k} e^{-xy}sin(x)dlambda(x).
end{eqnarray}$$ Thus we have
$$begin{eqnarray}
int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x)&=&sum_{kge 0}left[int_{I_k} e^{-xy}|sin{x}|dlambda(x)+int_{J_k} e^{-xy}|sin{x}|dlambda(x)right]\
&le&2sum_{kge 0}int_{J_k} e^{-xy}sin{x}dlambda(x)\
&=&2int_{bigcup_{kge 0} J_k} e^{-xy}sin{x}dlambda(x)=2int_{A} e^{-xy}sin{x}dlambda(x).
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Let $I_k =[(2k+1)pi,(2k+2)pi]$ and $J_k =[2kpi,(2k+1)pi]$. Then we have
$$begin{eqnarray}
int_{I_k} e^{-xy}|sin{x}|dlambda(x) &=&int_{J_k} e^{-(x+pi)y}|sin(x+pi)|dlambda(x)\
&=&int_{J_k} e^{-(x+pi)y}sin(x)dlambda(x)\
&le&int_{J_k} e^{-xy}sin(x)dlambda(x).
end{eqnarray}$$ Thus we have
$$begin{eqnarray}
int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x)&=&sum_{kge 0}left[int_{I_k} e^{-xy}|sin{x}|dlambda(x)+int_{J_k} e^{-xy}|sin{x}|dlambda(x)right]\
&le&2sum_{kge 0}int_{J_k} e^{-xy}sin{x}dlambda(x)\
&=&2int_{bigcup_{kge 0} J_k} e^{-xy}sin{x}dlambda(x)=2int_{A} e^{-xy}sin{x}dlambda(x).
end{eqnarray}$$
$endgroup$
Let $I_k =[(2k+1)pi,(2k+2)pi]$ and $J_k =[2kpi,(2k+1)pi]$. Then we have
$$begin{eqnarray}
int_{I_k} e^{-xy}|sin{x}|dlambda(x) &=&int_{J_k} e^{-(x+pi)y}|sin(x+pi)|dlambda(x)\
&=&int_{J_k} e^{-(x+pi)y}sin(x)dlambda(x)\
&le&int_{J_k} e^{-xy}sin(x)dlambda(x).
end{eqnarray}$$ Thus we have
$$begin{eqnarray}
int_{[0,infty[}e^{-xy}|sin{x}|dlambda(x)&=&sum_{kge 0}left[int_{I_k} e^{-xy}|sin{x}|dlambda(x)+int_{J_k} e^{-xy}|sin{x}|dlambda(x)right]\
&le&2sum_{kge 0}int_{J_k} e^{-xy}sin{x}dlambda(x)\
&=&2int_{bigcup_{kge 0} J_k} e^{-xy}sin{x}dlambda(x)=2int_{A} e^{-xy}sin{x}dlambda(x).
end{eqnarray}$$
answered Jan 10 at 21:48
SongSong
11.8k628
11.8k628
add a comment |
add a comment |
$begingroup$
You need to compare $I=int_0^{pi}e^{-xy}|sinx|dlambda(x)$ with $J=int_{pi}^{2pi}e^{-xy}|sinx|dlambda(x)$ Because of the exponential term, $Jlt I$. (Note the same comparison holds for each interval of length $2pi$). The right side of your inequality is made up of terms like $2I$, while the left side is made up of terms like $I+J$, so the left side is smaller for all $ygt 0$.
I suppose if $lambda(x)$ was weird enough, you could get equality.
$endgroup$
add a comment |
$begingroup$
You need to compare $I=int_0^{pi}e^{-xy}|sinx|dlambda(x)$ with $J=int_{pi}^{2pi}e^{-xy}|sinx|dlambda(x)$ Because of the exponential term, $Jlt I$. (Note the same comparison holds for each interval of length $2pi$). The right side of your inequality is made up of terms like $2I$, while the left side is made up of terms like $I+J$, so the left side is smaller for all $ygt 0$.
I suppose if $lambda(x)$ was weird enough, you could get equality.
$endgroup$
add a comment |
$begingroup$
You need to compare $I=int_0^{pi}e^{-xy}|sinx|dlambda(x)$ with $J=int_{pi}^{2pi}e^{-xy}|sinx|dlambda(x)$ Because of the exponential term, $Jlt I$. (Note the same comparison holds for each interval of length $2pi$). The right side of your inequality is made up of terms like $2I$, while the left side is made up of terms like $I+J$, so the left side is smaller for all $ygt 0$.
I suppose if $lambda(x)$ was weird enough, you could get equality.
$endgroup$
You need to compare $I=int_0^{pi}e^{-xy}|sinx|dlambda(x)$ with $J=int_{pi}^{2pi}e^{-xy}|sinx|dlambda(x)$ Because of the exponential term, $Jlt I$. (Note the same comparison holds for each interval of length $2pi$). The right side of your inequality is made up of terms like $2I$, while the left side is made up of terms like $I+J$, so the left side is smaller for all $ygt 0$.
I suppose if $lambda(x)$ was weird enough, you could get equality.
answered Jan 10 at 21:57
herb steinbergherb steinberg
2,7082310
2,7082310
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069190%2fwhy-is-int-0-inftye-xy-sinxd-lambdax-leq-2-int-ae-xy-sinx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Can you prove that $int_0^{2 pi} e^{-xy}|sin y| , dy le 2 int_0^pi e^{-xy} sin y , dy$?
$endgroup$
– Hans Engler
Jan 10 at 21:48
$begingroup$
The problem is unfortunately stated by using $lambda(x)dx$ rather than simply $dx$. In an extreme case $lambda(A)=0$ making the right hand side $=0$, but having a positive value for the left side with $lambda(A')ne 0$.
$endgroup$
– herb steinberg
Jan 10 at 23:36