A reduction formula for $int_0^1 x^n/sqrt{9 - x^2},mathrm dx$












3












$begingroup$



Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$



Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$




I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.



I'm struggling to go any further. Anyone have any hints?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
    $endgroup$
    – HDE 226868
    Dec 14 '14 at 0:46












  • $begingroup$
    Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
    $endgroup$
    – jane brown
    Dec 14 '14 at 0:51
















3












$begingroup$



Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$



Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$




I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.



I'm struggling to go any further. Anyone have any hints?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
    $endgroup$
    – HDE 226868
    Dec 14 '14 at 0:46












  • $begingroup$
    Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
    $endgroup$
    – jane brown
    Dec 14 '14 at 0:51














3












3








3


2



$begingroup$



Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$



Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$




I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.



I'm struggling to go any further. Anyone have any hints?










share|cite|improve this question











$endgroup$





Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$



Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$




I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.



I'm struggling to go any further. Anyone have any hints?







calculus integration definite-integrals radicals reduction-formula






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 2:36









clathratus

5,0351338




5,0351338










asked Dec 14 '14 at 0:07









jane brownjane brown

283




283












  • $begingroup$
    Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
    $endgroup$
    – HDE 226868
    Dec 14 '14 at 0:46












  • $begingroup$
    Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
    $endgroup$
    – jane brown
    Dec 14 '14 at 0:51


















  • $begingroup$
    Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
    $endgroup$
    – HDE 226868
    Dec 14 '14 at 0:46












  • $begingroup$
    Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
    $endgroup$
    – jane brown
    Dec 14 '14 at 0:51
















$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46






$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46














$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51




$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51










2 Answers
2






active

oldest

votes


















4












$begingroup$

$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$



$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$



$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$



After rearrangement we get




$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you so much :) :) :) Integrator
    $endgroup$
    – jane brown
    Dec 14 '14 at 4:19





















2












$begingroup$

Hint:-



$x=3sin theta implies dx=3costheta dtheta$



$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    nice substitution but what happened to the limits?
    $endgroup$
    – abel
    Dec 14 '14 at 14:35











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1067022%2fa-reduction-formula-for-int-01-xn-sqrt9-x2-mathrm-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$



$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$



$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$



After rearrangement we get




$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you so much :) :) :) Integrator
    $endgroup$
    – jane brown
    Dec 14 '14 at 4:19


















4












$begingroup$

$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$



$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$



$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$



After rearrangement we get




$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you so much :) :) :) Integrator
    $endgroup$
    – jane brown
    Dec 14 '14 at 4:19
















4












4








4





$begingroup$

$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$



$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$



$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$



After rearrangement we get




$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$







share|cite|improve this answer











$endgroup$



$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$



$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$



$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$



After rearrangement we get




$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$








share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jul 9 '18 at 17:51









tatan

5,80262760




5,80262760










answered Dec 14 '14 at 3:22









IuʇǝƃɹɐʇoɹIuʇǝƃɹɐʇoɹ

8,35723550




8,35723550












  • $begingroup$
    Thank you so much :) :) :) Integrator
    $endgroup$
    – jane brown
    Dec 14 '14 at 4:19




















  • $begingroup$
    Thank you so much :) :) :) Integrator
    $endgroup$
    – jane brown
    Dec 14 '14 at 4:19


















$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19






$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19













2












$begingroup$

Hint:-



$x=3sin theta implies dx=3costheta dtheta$



$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    nice substitution but what happened to the limits?
    $endgroup$
    – abel
    Dec 14 '14 at 14:35
















2












$begingroup$

Hint:-



$x=3sin theta implies dx=3costheta dtheta$



$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    nice substitution but what happened to the limits?
    $endgroup$
    – abel
    Dec 14 '14 at 14:35














2












2








2





$begingroup$

Hint:-



$x=3sin theta implies dx=3costheta dtheta$



$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$






share|cite|improve this answer









$endgroup$



Hint:-



$x=3sin theta implies dx=3costheta dtheta$



$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 14 '14 at 4:44









user 170039user 170039

10.5k42466




10.5k42466












  • $begingroup$
    nice substitution but what happened to the limits?
    $endgroup$
    – abel
    Dec 14 '14 at 14:35


















  • $begingroup$
    nice substitution but what happened to the limits?
    $endgroup$
    – abel
    Dec 14 '14 at 14:35
















$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35




$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1067022%2fa-reduction-formula-for-int-01-xn-sqrt9-x2-mathrm-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$