A reduction formula for $int_0^1 x^n/sqrt{9 - x^2},mathrm dx$
$begingroup$
Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$
Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$
I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.
I'm struggling to go any further. Anyone have any hints?
calculus integration definite-integrals radicals reduction-formula
$endgroup$
add a comment |
$begingroup$
Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$
Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$
I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.
I'm struggling to go any further. Anyone have any hints?
calculus integration definite-integrals radicals reduction-formula
$endgroup$
$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46
$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51
add a comment |
$begingroup$
Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$
Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$
I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.
I'm struggling to go any further. Anyone have any hints?
calculus integration definite-integrals radicals reduction-formula
$endgroup$
Let $$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx$$
Using integration, show that $$nI_n = 9(n - 1)nI_{n - 2} - 2sqrt2$$
I've found that $displaystyle I_0 = sin^{-1}left(frac{1}{3}right)$, but that's it.
I'm struggling to go any further. Anyone have any hints?
calculus integration definite-integrals radicals reduction-formula
calculus integration definite-integrals radicals reduction-formula
edited Jan 25 at 2:36
clathratus
5,0351338
5,0351338
asked Dec 14 '14 at 0:07
jane brownjane brown
283
283
$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46
$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51
add a comment |
$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46
$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51
$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46
$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46
$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51
$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$
$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$
$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$
After rearrangement we get
$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$
$endgroup$
$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19
add a comment |
$begingroup$
Hint:-
$x=3sin theta implies dx=3costheta dtheta$
$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$
$endgroup$
$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1067022%2fa-reduction-formula-for-int-01-xn-sqrt9-x2-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$
$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$
$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$
After rearrangement we get
$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$
$endgroup$
$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19
add a comment |
$begingroup$
$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$
$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$
$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$
After rearrangement we get
$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$
$endgroup$
$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19
add a comment |
$begingroup$
$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$
$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$
$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$
After rearrangement we get
$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$
$endgroup$
$$I_n = int_0^1 frac{x^n}{sqrt{9 - x^2}},mathrm dx= int_0^1 x^{n-1}cdotfrac{x}{sqrt{9 - x^2}},mathrm dx$$
Using Integration By Parts
$$frac{x}{sqrt{9 - x^2}},mathrm dx=,mathrm dviff-sqrt{9-x^2}=v$$
$$x^{n-1}=uiff (n-1)x^{n-2},mathrm dx=,mathrm du$$
$$begin{align}
I_n
&= -x^{n-1}cdotsqrt{9-x^2}Bigg|_0^1+(n-1)int_0^1x^{n-2}sqrt{9-x^2},mathrm dxtag{1}\
&= -2sqrt2+(n-1)int_0^1frac{x^{n-2}(9-x^2)}{sqrt{9-x^2}},mathrm dxtag{2}\
&= -2sqrt2+9(n-1)int_0^1frac{x^{n-2}}{sqrt{9-x^2}},mathrm dx-(n-1)int_0^1frac{x^{n}}{sqrt{9-x^2}},mathrm dxtag{3}\
&= -2sqrt2+9(n-1)I_{n-2}-(n-1)I_{n}tag{4}\
end{align}$$
After rearrangement we get
$$(n)I_{n} =9(n-1)I_{n-2} -2sqrt2$$
edited Jul 9 '18 at 17:51
tatan
5,80262760
5,80262760
answered Dec 14 '14 at 3:22
IuʇǝƃɹɐʇoɹIuʇǝƃɹɐʇoɹ
8,35723550
8,35723550
$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19
add a comment |
$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19
$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19
$begingroup$
Thank you so much :) :) :) Integrator
$endgroup$
– jane brown
Dec 14 '14 at 4:19
add a comment |
$begingroup$
Hint:-
$x=3sin theta implies dx=3costheta dtheta$
$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$
$endgroup$
$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35
add a comment |
$begingroup$
Hint:-
$x=3sin theta implies dx=3costheta dtheta$
$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$
$endgroup$
$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35
add a comment |
$begingroup$
Hint:-
$x=3sin theta implies dx=3costheta dtheta$
$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$
$endgroup$
Hint:-
$x=3sin theta implies dx=3costheta dtheta$
$therefore displaystyleintdfrac{x^n}{sqrt{9-x^2}}dx=displaystyleintdfrac{3^nsin^ntheta cos theta}{cos theta}dtheta=3^ndisplaystyleint{sin^ntheta } dtheta$
answered Dec 14 '14 at 4:44
user 170039user 170039
10.5k42466
10.5k42466
$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35
add a comment |
$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35
$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35
$begingroup$
nice substitution but what happened to the limits?
$endgroup$
– abel
Dec 14 '14 at 14:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1067022%2fa-reduction-formula-for-int-01-xn-sqrt9-x2-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Well, from the last bit, $$I_n=frac{9(n-1)nI_{n-2}-2 sqrt{2}}{n}$$ and so you can find $I_2$.
$endgroup$
– HDE 226868
Dec 14 '14 at 0:46
$begingroup$
Yeah, i figured that out as well, but how do you use integration by parts to show the required answer...
$endgroup$
– jane brown
Dec 14 '14 at 0:51