Conditional expectation of minimum of exponential random variables












2












$begingroup$


Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.



I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?



Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").



Edit 2: I eventually found my own solution, which I've posted as an answer below.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You cannot answer this without any independence assumption.
    $endgroup$
    – Kavi Rama Murthy
    Jan 25 at 5:47










  • $begingroup$
    Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
    $endgroup$
    – Henry
    Jan 25 at 8:49










  • $begingroup$
    Ah yes, they are independent. I edited it.
    $endgroup$
    – D Ford
    Jan 25 at 16:33










  • $begingroup$
    @Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
    $endgroup$
    – D Ford
    Jan 25 at 16:34










  • $begingroup$
    With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
    $endgroup$
    – Henry
    Jan 25 at 16:41


















2












$begingroup$


Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.



I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?



Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").



Edit 2: I eventually found my own solution, which I've posted as an answer below.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You cannot answer this without any independence assumption.
    $endgroup$
    – Kavi Rama Murthy
    Jan 25 at 5:47










  • $begingroup$
    Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
    $endgroup$
    – Henry
    Jan 25 at 8:49










  • $begingroup$
    Ah yes, they are independent. I edited it.
    $endgroup$
    – D Ford
    Jan 25 at 16:33










  • $begingroup$
    @Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
    $endgroup$
    – D Ford
    Jan 25 at 16:34










  • $begingroup$
    With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
    $endgroup$
    – Henry
    Jan 25 at 16:41
















2












2








2


1



$begingroup$


Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.



I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?



Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").



Edit 2: I eventually found my own solution, which I've posted as an answer below.










share|cite|improve this question











$endgroup$




Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.



I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?



Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").



Edit 2: I eventually found my own solution, which I've posted as an answer below.







probability probability-theory conditional-expectation conditional-probability exponential-distribution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 21:21







D Ford

















asked Jan 25 at 4:05









D FordD Ford

665313




665313












  • $begingroup$
    You cannot answer this without any independence assumption.
    $endgroup$
    – Kavi Rama Murthy
    Jan 25 at 5:47










  • $begingroup$
    Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
    $endgroup$
    – Henry
    Jan 25 at 8:49










  • $begingroup$
    Ah yes, they are independent. I edited it.
    $endgroup$
    – D Ford
    Jan 25 at 16:33










  • $begingroup$
    @Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
    $endgroup$
    – D Ford
    Jan 25 at 16:34










  • $begingroup$
    With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
    $endgroup$
    – Henry
    Jan 25 at 16:41




















  • $begingroup$
    You cannot answer this without any independence assumption.
    $endgroup$
    – Kavi Rama Murthy
    Jan 25 at 5:47










  • $begingroup$
    Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
    $endgroup$
    – Henry
    Jan 25 at 8:49










  • $begingroup$
    Ah yes, they are independent. I edited it.
    $endgroup$
    – D Ford
    Jan 25 at 16:33










  • $begingroup$
    @Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
    $endgroup$
    – D Ford
    Jan 25 at 16:34










  • $begingroup$
    With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
    $endgroup$
    – Henry
    Jan 25 at 16:41


















$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47




$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47












$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49




$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49












$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33




$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33












$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34




$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34












$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41






$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41












3 Answers
3






active

oldest

votes


















1












$begingroup$

$$
E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
    $endgroup$
    – D Ford
    Jan 25 at 20:16












  • $begingroup$
    @DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:20










  • $begingroup$
    Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:21










  • $begingroup$
    If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
    $endgroup$
    – D Ford
    Jan 25 at 20:33






  • 1




    $begingroup$
    @DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:57





















1












$begingroup$

Here you are an other way to see it (to not condition on zero probability events).



The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
begin{align}
g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
end{align}

Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
begin{align}
g(y)
& =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
%
& =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
}
{int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
%
left(
int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
+
x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
e^{-2theta x_1}
%
left(
e^{theta x_1} - theta x_1 -1
+
theta x_1
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac{1}{theta }
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
{rm d }x_1
-
int_{y-epsilon}^{y+epsilon}
theta e^{-2theta x_1}
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =
frac{1}{theta }-
frac{1}{2theta }
lim _{epsilon to 0}
frac
{
e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
% & =
% frac{1}{theta }-
% frac{e^{-theta y}}{2theta }
% lim _{epsilon to 0}
% frac
% {
% e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
% }
% {
% e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
% } \
& =
frac{1}{theta }-
frac{e^{-theta y}}{2theta }
times
frac
{
4 theta
}
{
2 theta
} \
& =
frac{1-e^{-theta y}}{theta }
end{align}



Hope it helps.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
    $endgroup$
    – D Ford
    Jan 27 at 20:03



















1












$begingroup$

We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
$$
mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
$$

Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
begin{align*}
mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
&= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
&= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
&= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
&= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
&= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
end{align*}

From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086688%2fconditional-expectation-of-minimum-of-exponential-random-variables%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $$
    E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
    $$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
      $endgroup$
      – D Ford
      Jan 25 at 20:16












    • $begingroup$
      @DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:20










    • $begingroup$
      Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:21










    • $begingroup$
      If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
      $endgroup$
      – D Ford
      Jan 25 at 20:33






    • 1




      $begingroup$
      @DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:57


















    1












    $begingroup$

    $$
    E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
    $$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
      $endgroup$
      – D Ford
      Jan 25 at 20:16












    • $begingroup$
      @DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:20










    • $begingroup$
      Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:21










    • $begingroup$
      If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
      $endgroup$
      – D Ford
      Jan 25 at 20:33






    • 1




      $begingroup$
      @DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:57
















    1












    1








    1





    $begingroup$

    $$
    E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
    $$






    share|cite|improve this answer









    $endgroup$



    $$
    E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
    $$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 25 at 18:31









    Mike EarnestMike Earnest

    25k22151




    25k22151












    • $begingroup$
      See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
      $endgroup$
      – D Ford
      Jan 25 at 20:16












    • $begingroup$
      @DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:20










    • $begingroup$
      Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:21










    • $begingroup$
      If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
      $endgroup$
      – D Ford
      Jan 25 at 20:33






    • 1




      $begingroup$
      @DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:57




















    • $begingroup$
      See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
      $endgroup$
      – D Ford
      Jan 25 at 20:16












    • $begingroup$
      @DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:20










    • $begingroup$
      Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:21










    • $begingroup$
      If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
      $endgroup$
      – D Ford
      Jan 25 at 20:33






    • 1




      $begingroup$
      @DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
      $endgroup$
      – Mike Earnest
      Jan 25 at 20:57


















    $begingroup$
    See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
    $endgroup$
    – D Ford
    Jan 25 at 20:16






    $begingroup$
    See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
    $endgroup$
    – D Ford
    Jan 25 at 20:16














    $begingroup$
    @DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:20




    $begingroup$
    @DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:20












    $begingroup$
    Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:21




    $begingroup$
    Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:21












    $begingroup$
    If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
    $endgroup$
    – D Ford
    Jan 25 at 20:33




    $begingroup$
    If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
    $endgroup$
    – D Ford
    Jan 25 at 20:33




    1




    1




    $begingroup$
    @DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:57






    $begingroup$
    @DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
    $endgroup$
    – Mike Earnest
    Jan 25 at 20:57













    1












    $begingroup$

    Here you are an other way to see it (to not condition on zero probability events).



    The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
    begin{align}
    g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
    end{align}

    Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
    begin{align}
    g(y)
    & =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
    %
    & =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
    }
    {int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    %
    left(
    int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
    +
    x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    e^{-2theta x_1}
    %
    left(
    e^{theta x_1} - theta x_1 -1
    +
    theta x_1
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac{1}{theta }
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    {rm d }x_1
    -
    int_{y-epsilon}^{y+epsilon}
    theta e^{-2theta x_1}
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =
    frac{1}{theta }-
    frac{1}{2theta }
    lim _{epsilon to 0}
    frac
    {
    e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    % & =
    % frac{1}{theta }-
    % frac{e^{-theta y}}{2theta }
    % lim _{epsilon to 0}
    % frac
    % {
    % e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
    % }
    % {
    % e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
    % } \
    & =
    frac{1}{theta }-
    frac{e^{-theta y}}{2theta }
    times
    frac
    {
    4 theta
    }
    {
    2 theta
    } \
    & =
    frac{1-e^{-theta y}}{theta }
    end{align}



    Hope it helps.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
      $endgroup$
      – D Ford
      Jan 27 at 20:03
















    1












    $begingroup$

    Here you are an other way to see it (to not condition on zero probability events).



    The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
    begin{align}
    g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
    end{align}

    Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
    begin{align}
    g(y)
    & =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
    %
    & =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
    }
    {int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    %
    left(
    int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
    +
    x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    e^{-2theta x_1}
    %
    left(
    e^{theta x_1} - theta x_1 -1
    +
    theta x_1
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac{1}{theta }
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    {rm d }x_1
    -
    int_{y-epsilon}^{y+epsilon}
    theta e^{-2theta x_1}
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =
    frac{1}{theta }-
    frac{1}{2theta }
    lim _{epsilon to 0}
    frac
    {
    e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    % & =
    % frac{1}{theta }-
    % frac{e^{-theta y}}{2theta }
    % lim _{epsilon to 0}
    % frac
    % {
    % e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
    % }
    % {
    % e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
    % } \
    & =
    frac{1}{theta }-
    frac{e^{-theta y}}{2theta }
    times
    frac
    {
    4 theta
    }
    {
    2 theta
    } \
    & =
    frac{1-e^{-theta y}}{theta }
    end{align}



    Hope it helps.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
      $endgroup$
      – D Ford
      Jan 27 at 20:03














    1












    1








    1





    $begingroup$

    Here you are an other way to see it (to not condition on zero probability events).



    The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
    begin{align}
    g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
    end{align}

    Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
    begin{align}
    g(y)
    & =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
    %
    & =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
    }
    {int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    %
    left(
    int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
    +
    x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    e^{-2theta x_1}
    %
    left(
    e^{theta x_1} - theta x_1 -1
    +
    theta x_1
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac{1}{theta }
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    {rm d }x_1
    -
    int_{y-epsilon}^{y+epsilon}
    theta e^{-2theta x_1}
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =
    frac{1}{theta }-
    frac{1}{2theta }
    lim _{epsilon to 0}
    frac
    {
    e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    % & =
    % frac{1}{theta }-
    % frac{e^{-theta y}}{2theta }
    % lim _{epsilon to 0}
    % frac
    % {
    % e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
    % }
    % {
    % e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
    % } \
    & =
    frac{1}{theta }-
    frac{e^{-theta y}}{2theta }
    times
    frac
    {
    4 theta
    }
    {
    2 theta
    } \
    & =
    frac{1-e^{-theta y}}{theta }
    end{align}



    Hope it helps.






    share|cite|improve this answer











    $endgroup$



    Here you are an other way to see it (to not condition on zero probability events).



    The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
    begin{align}
    g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
    end{align}

    Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
    begin{align}
    g(y)
    & =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
    %
    & =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
    }
    {int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
    %
    & =lim _{epsilon to 0}
    frac
    {
    % mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
    int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    %
    left(
    int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
    +
    x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    e^{-2theta x_1}
    %
    left(
    e^{theta x_1} - theta x_1 -1
    +
    theta x_1
    right)
    %
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =lim _{epsilon to 0}
    frac{1}{theta }
    frac
    {
    int_{y-epsilon}^{y+epsilon}
    theta e^{-theta x_1}
    {rm d }x_1
    -
    int_{y-epsilon}^{y+epsilon}
    theta e^{-2theta x_1}
    {rm d }x_1
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    & =
    frac{1}{theta }-
    frac{1}{2theta }
    lim _{epsilon to 0}
    frac
    {
    e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
    }
    {
    e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
    } \
    %
    % & =
    % frac{1}{theta }-
    % frac{e^{-theta y}}{2theta }
    % lim _{epsilon to 0}
    % frac
    % {
    % e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
    % }
    % {
    % e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
    % } \
    & =
    frac{1}{theta }-
    frac{e^{-theta y}}{2theta }
    times
    frac
    {
    4 theta
    }
    {
    2 theta
    } \
    & =
    frac{1-e^{-theta y}}{theta }
    end{align}



    Hope it helps.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 27 at 13:20

























    answered Jan 26 at 21:47









    user52227user52227

    1,038512




    1,038512












    • $begingroup$
      Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
      $endgroup$
      – D Ford
      Jan 27 at 20:03


















    • $begingroup$
      Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
      $endgroup$
      – D Ford
      Jan 27 at 20:03
















    $begingroup$
    Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
    $endgroup$
    – D Ford
    Jan 27 at 20:03




    $begingroup$
    Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
    $endgroup$
    – D Ford
    Jan 27 at 20:03











    1












    $begingroup$

    We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
    $$
    mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
    $$

    Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
    begin{align*}
    mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
    &= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
    &= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
    &= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
    &= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
    &= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
    end{align*}

    From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
      $$
      mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
      $$

      Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
      begin{align*}
      mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
      &= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
      &= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
      &= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
      &= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
      &= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
      end{align*}

      From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
        $$
        mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
        $$

        Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
        begin{align*}
        mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
        &= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
        &= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
        &= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
        &= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
        &= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
        end{align*}

        From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$






        share|cite|improve this answer









        $endgroup$



        We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
        $$
        mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
        $$

        Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
        begin{align*}
        mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
        &= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
        &= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
        &= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
        &= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
        &= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
        end{align*}

        From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 27 at 20:02









        D FordD Ford

        665313




        665313






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086688%2fconditional-expectation-of-minimum-of-exponential-random-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$