Conditional expectation of minimum of exponential random variables
$begingroup$
Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.
I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?
Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").
Edit 2: I eventually found my own solution, which I've posted as an answer below.
probability probability-theory conditional-expectation conditional-probability exponential-distribution
$endgroup$
|
show 1 more comment
$begingroup$
Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.
I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?
Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").
Edit 2: I eventually found my own solution, which I've posted as an answer below.
probability probability-theory conditional-expectation conditional-probability exponential-distribution
$endgroup$
$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47
$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49
$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33
$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34
$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41
|
show 1 more comment
$begingroup$
Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.
I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?
Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").
Edit 2: I eventually found my own solution, which I've posted as an answer below.
probability probability-theory conditional-expectation conditional-probability exponential-distribution
$endgroup$
Let $X_1$ and $X_2$ be independent exponentially distributed random variables with parameter $theta > 0$. I want to compute $mathbb E[X_1 wedge X_2 | X_1]$, where $X_1 wedge X_2 := min(X_1, X_2)$.
I'm really not sure how to do this. I don't want to use any joint distribution formulas (that's a different exercise in this text). Basically all I know about conditional expectations is that $mathbb Eleft[mathbb E[X | Y] mathbb 1_A right] = mathbb E[X mathbb 1_A]$, for any $A in sigma(Y)$. I thought about using this property to calculate $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 leq X_2}}| X_1right]$ and $mathbb Eleft[(X_1 wedge X_2) mathbb 1_{{X_1 > X_2}}| X_1right]$ separately, but it's not clear to me that either of these sets are necessarily in $sigma(X_1)$. Any hints?
Edit: I want to avoid using conditional probability over expectations while conditioning over zero-probability events. That's a different section of the book I'm reading out of (Achim Klenke's "Probability Theory: A Comprehensive Course").
Edit 2: I eventually found my own solution, which I've posted as an answer below.
probability probability-theory conditional-expectation conditional-probability exponential-distribution
probability probability-theory conditional-expectation conditional-probability exponential-distribution
edited Jan 27 at 21:21
D Ford
asked Jan 25 at 4:05
D FordD Ford
665313
665313
$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47
$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49
$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33
$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34
$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41
|
show 1 more comment
$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47
$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49
$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33
$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34
$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41
$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47
$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47
$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49
$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49
$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33
$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33
$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34
$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34
$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41
$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41
|
show 1 more comment
3 Answers
3
active
oldest
votes
$begingroup$
$$
E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
$$
$endgroup$
$begingroup$
See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
$endgroup$
– D Ford
Jan 25 at 20:16
$begingroup$
@DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
$endgroup$
– Mike Earnest
Jan 25 at 20:20
$begingroup$
Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
$endgroup$
– Mike Earnest
Jan 25 at 20:21
$begingroup$
If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
$endgroup$
– D Ford
Jan 25 at 20:33
1
$begingroup$
@DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
$endgroup$
– Mike Earnest
Jan 25 at 20:57
|
show 1 more comment
$begingroup$
Here you are an other way to see it (to not condition on zero probability events).
The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
begin{align}
g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
end{align}
Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
begin{align}
g(y)
& =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
%
& =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
}
{int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
%
left(
int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
+
x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
e^{-2theta x_1}
%
left(
e^{theta x_1} - theta x_1 -1
+
theta x_1
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac{1}{theta }
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
{rm d }x_1
-
int_{y-epsilon}^{y+epsilon}
theta e^{-2theta x_1}
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =
frac{1}{theta }-
frac{1}{2theta }
lim _{epsilon to 0}
frac
{
e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
% & =
% frac{1}{theta }-
% frac{e^{-theta y}}{2theta }
% lim _{epsilon to 0}
% frac
% {
% e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
% }
% {
% e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
% } \
& =
frac{1}{theta }-
frac{e^{-theta y}}{2theta }
times
frac
{
4 theta
}
{
2 theta
} \
& =
frac{1-e^{-theta y}}{theta }
end{align}
Hope it helps.
$endgroup$
$begingroup$
Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
$endgroup$
– D Ford
Jan 27 at 20:03
add a comment |
$begingroup$
We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
$$
mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
$$
Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
begin{align*}
mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
&= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
&= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
&= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
&= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
&= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
end{align*}
From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086688%2fconditional-expectation-of-minimum-of-exponential-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
$$
$endgroup$
$begingroup$
See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
$endgroup$
– D Ford
Jan 25 at 20:16
$begingroup$
@DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
$endgroup$
– Mike Earnest
Jan 25 at 20:20
$begingroup$
Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
$endgroup$
– Mike Earnest
Jan 25 at 20:21
$begingroup$
If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
$endgroup$
– D Ford
Jan 25 at 20:33
1
$begingroup$
@DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
$endgroup$
– Mike Earnest
Jan 25 at 20:57
|
show 1 more comment
$begingroup$
$$
E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
$$
$endgroup$
$begingroup$
See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
$endgroup$
– D Ford
Jan 25 at 20:16
$begingroup$
@DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
$endgroup$
– Mike Earnest
Jan 25 at 20:20
$begingroup$
Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
$endgroup$
– Mike Earnest
Jan 25 at 20:21
$begingroup$
If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
$endgroup$
– D Ford
Jan 25 at 20:33
1
$begingroup$
@DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
$endgroup$
– Mike Earnest
Jan 25 at 20:57
|
show 1 more comment
$begingroup$
$$
E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
$$
$endgroup$
$$
E[X_1wedge X_2|X_1=s]=int_0^infty (twedge s)hspace{-.5cm}underbrace{theta e^{-theta t}}_{text{conditional pdf}\text{of $X_2$ given $X_1=s$}}hspace{-.5cm},dt=int_0^sttheta e^{-ttheta},dt+int_s^infty stheta e^{-ttheta},dt
$$
answered Jan 25 at 18:31
Mike EarnestMike Earnest
25k22151
25k22151
$begingroup$
See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
$endgroup$
– D Ford
Jan 25 at 20:16
$begingroup$
@DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
$endgroup$
– Mike Earnest
Jan 25 at 20:20
$begingroup$
Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
$endgroup$
– Mike Earnest
Jan 25 at 20:21
$begingroup$
If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
$endgroup$
– D Ford
Jan 25 at 20:33
1
$begingroup$
@DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
$endgroup$
– Mike Earnest
Jan 25 at 20:57
|
show 1 more comment
$begingroup$
See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
$endgroup$
– D Ford
Jan 25 at 20:16
$begingroup$
@DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
$endgroup$
– Mike Earnest
Jan 25 at 20:20
$begingroup$
Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
$endgroup$
– Mike Earnest
Jan 25 at 20:21
$begingroup$
If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
$endgroup$
– D Ford
Jan 25 at 20:33
1
$begingroup$
@DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
$endgroup$
– Mike Earnest
Jan 25 at 20:57
$begingroup$
See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
$endgroup$
– D Ford
Jan 25 at 20:16
$begingroup$
See my above comment: $mathbb P[X_1 = s] = 0$ for each fixed $s$, and I'd prefer to avoid conditioning on zero-probability events. Plus I'm not sure how to calculate $mathbb E[X_1 wedge X_2 | X_1] $ from knowing $mathbb E[X_1 wedge X_2 | X_1 = s]$ for any given $s$.
$endgroup$
– D Ford
Jan 25 at 20:16
$begingroup$
@DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
$endgroup$
– Mike Earnest
Jan 25 at 20:20
$begingroup$
@DFord The above calculation will give you the correct answer, and then you can prove it is correct by showing it satisfies $E[E[X_1wedge X_2|X_1]1_A]=E[X_1wedge X_2cdot 1_A]$ for all $Ain sigma(X_1)$.
$endgroup$
– Mike Earnest
Jan 25 at 20:20
$begingroup$
Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
$endgroup$
– Mike Earnest
Jan 25 at 20:21
$begingroup$
Also, $E[X_1wedge X_2|X_1=s]$ works out to be $f(s)$ for some function $s$. Then $E[X_1wedge X_2|X_1]=f(X_1)$. @DFord
$endgroup$
– Mike Earnest
Jan 25 at 20:21
$begingroup$
If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
$endgroup$
– D Ford
Jan 25 at 20:33
$begingroup$
If $mathbb E[X_1 wedge X_2 | X_1 = s] = f(s)$, wouldn't it follow that $f(X_1) = mathbb E[X_1 wedge X_2 | X_1 = X_1] = mathbb E[X_1 wedge X_2]$?
$endgroup$
– D Ford
Jan 25 at 20:33
1
1
$begingroup$
@DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
$endgroup$
– Mike Earnest
Jan 25 at 20:57
$begingroup$
@DFord It doesn't quite work like that. If $F(x)=P(Xle x)$ is the cdf of a random variable $X$, do you conclude $F(X)=P(Xle X)=1$? No, $F(X)$ is just another random variable, which takes values between $0$ and $1$. Same kind of thing here.
$endgroup$
– Mike Earnest
Jan 25 at 20:57
|
show 1 more comment
$begingroup$
Here you are an other way to see it (to not condition on zero probability events).
The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
begin{align}
g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
end{align}
Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
begin{align}
g(y)
& =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
%
& =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
}
{int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
%
left(
int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
+
x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
e^{-2theta x_1}
%
left(
e^{theta x_1} - theta x_1 -1
+
theta x_1
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac{1}{theta }
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
{rm d }x_1
-
int_{y-epsilon}^{y+epsilon}
theta e^{-2theta x_1}
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =
frac{1}{theta }-
frac{1}{2theta }
lim _{epsilon to 0}
frac
{
e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
% & =
% frac{1}{theta }-
% frac{e^{-theta y}}{2theta }
% lim _{epsilon to 0}
% frac
% {
% e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
% }
% {
% e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
% } \
& =
frac{1}{theta }-
frac{e^{-theta y}}{2theta }
times
frac
{
4 theta
}
{
2 theta
} \
& =
frac{1-e^{-theta y}}{theta }
end{align}
Hope it helps.
$endgroup$
$begingroup$
Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
$endgroup$
– D Ford
Jan 27 at 20:03
add a comment |
$begingroup$
Here you are an other way to see it (to not condition on zero probability events).
The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
begin{align}
g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
end{align}
Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
begin{align}
g(y)
& =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
%
& =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
}
{int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
%
left(
int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
+
x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
e^{-2theta x_1}
%
left(
e^{theta x_1} - theta x_1 -1
+
theta x_1
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac{1}{theta }
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
{rm d }x_1
-
int_{y-epsilon}^{y+epsilon}
theta e^{-2theta x_1}
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =
frac{1}{theta }-
frac{1}{2theta }
lim _{epsilon to 0}
frac
{
e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
% & =
% frac{1}{theta }-
% frac{e^{-theta y}}{2theta }
% lim _{epsilon to 0}
% frac
% {
% e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
% }
% {
% e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
% } \
& =
frac{1}{theta }-
frac{e^{-theta y}}{2theta }
times
frac
{
4 theta
}
{
2 theta
} \
& =
frac{1-e^{-theta y}}{theta }
end{align}
Hope it helps.
$endgroup$
$begingroup$
Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
$endgroup$
– D Ford
Jan 27 at 20:03
add a comment |
$begingroup$
Here you are an other way to see it (to not condition on zero probability events).
The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
begin{align}
g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
end{align}
Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
begin{align}
g(y)
& =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
%
& =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
}
{int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
%
left(
int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
+
x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
e^{-2theta x_1}
%
left(
e^{theta x_1} - theta x_1 -1
+
theta x_1
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac{1}{theta }
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
{rm d }x_1
-
int_{y-epsilon}^{y+epsilon}
theta e^{-2theta x_1}
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =
frac{1}{theta }-
frac{1}{2theta }
lim _{epsilon to 0}
frac
{
e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
% & =
% frac{1}{theta }-
% frac{e^{-theta y}}{2theta }
% lim _{epsilon to 0}
% frac
% {
% e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
% }
% {
% e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
% } \
& =
frac{1}{theta }-
frac{e^{-theta y}}{2theta }
times
frac
{
4 theta
}
{
2 theta
} \
& =
frac{1-e^{-theta y}}{theta }
end{align}
Hope it helps.
$endgroup$
Here you are an other way to see it (to not condition on zero probability events).
The conditional expectation with respect to a continuous random variable $mathbb{E}[Xmid Y]$ can be defined as (see https://en.wikipedia.org/wiki/Conditional_expectation)
begin{align}
g(y)=lim _{epsilon to 0}mathbb{E} [ X| {omega: |Y(omega)-y |le epsilon} ]
end{align}
Applying this to your case and letting $H_{epsilon,y}={omega: |X_1(omega)-y |le epsilon}$, we get
begin{align}
g(y)
& =lim _{epsilon to 0}mathbb{E} [ X_1 vee X_2 mid H_{epsilon,y} ] \
%
& =lim _{epsilon to 0}frac{mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]}{P(H_{epsilon,y} )} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{mathbb{R}_+^2} (x_1 vee x_2) I_{{|x_1-y |le epsilon}} theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x
}
{int_{y-epsilon}^{y+epsilon} theta e^{-theta z}{rm d }z} \
%
& =lim _{epsilon to 0}
frac
{
% mathbb{E} [ (X_1 vee X_2) I_{H_{epsilon,y}} ]
int_{y-epsilon}^{y+epsilon} int_{mathbb{R}_+} (x_1 vee x_2) theta e^{-theta x_1} theta e^{-theta x_2} {rm d }x_2{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
%
left(
int_{0}^{x_1} x_2theta e^{-theta x_2} {rm d }x_2
+
x_1 int_{x_1}^{infty} theta e^{-theta x_2} {rm d }x_2
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac
{
int_{y-epsilon}^{y+epsilon}
e^{-2theta x_1}
%
left(
e^{theta x_1} - theta x_1 -1
+
theta x_1
right)
%
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =lim _{epsilon to 0}
frac{1}{theta }
frac
{
int_{y-epsilon}^{y+epsilon}
theta e^{-theta x_1}
{rm d }x_1
-
int_{y-epsilon}^{y+epsilon}
theta e^{-2theta x_1}
{rm d }x_1
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
& =
frac{1}{theta }-
frac{1}{2theta }
lim _{epsilon to 0}
frac
{
e^{-2theta(y-epsilon)} -e^{-2theta(y+epsilon)}
}
{
e^{-theta(y-epsilon)} -e^{-theta(y+epsilon)}
} \
%
% & =
% frac{1}{theta }-
% frac{e^{-theta y}}{2theta }
% lim _{epsilon to 0}
% frac
% {
% e^{2theta epsilon} - 1 - (e^{-2theta epsilon} -1)
% }
% {
% e^{ theta epsilon} -1 - (e^{- theta epsilon}-1)
% } \
& =
frac{1}{theta }-
frac{e^{-theta y}}{2theta }
times
frac
{
4 theta
}
{
2 theta
} \
& =
frac{1-e^{-theta y}}{theta }
end{align}
Hope it helps.
edited Jan 27 at 13:20
answered Jan 26 at 21:47
user52227user52227
1,038512
1,038512
$begingroup$
Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
$endgroup$
– D Ford
Jan 27 at 20:03
add a comment |
$begingroup$
Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
$endgroup$
– D Ford
Jan 27 at 20:03
$begingroup$
Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
$endgroup$
– D Ford
Jan 27 at 20:03
$begingroup$
Yes, that's the answer I got. Though I ended up finding it using image measures and densities instead of explicit limits, although I like your solution. Thanks!
$endgroup$
– D Ford
Jan 27 at 20:03
add a comment |
$begingroup$
We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
$$
mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
$$
Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
begin{align*}
mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
&= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
&= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
&= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
&= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
&= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
end{align*}
From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$
$endgroup$
add a comment |
$begingroup$
We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
$$
mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
$$
Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
begin{align*}
mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
&= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
&= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
&= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
&= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
&= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
end{align*}
From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$
$endgroup$
add a comment |
$begingroup$
We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
$$
mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
$$
Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
begin{align*}
mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
&= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
&= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
&= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
&= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
&= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
end{align*}
From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$
$endgroup$
We're looking for a $sigma(X_1)$-measurable function $mathbb Eleft[X_1 wedge X_2 | X_1right] : Omega to mathbb R$ for which for every $A in sigma(X_1)$,
$$
mathbb Eleft[left(X_1 wedge X_2right) mathbb 1_Aright] = mathbb Eleft[mathbb Eleft[ X_1 wedge X_2 | X_1 right] mathbb 1_A right].
$$
Let $f_theta(x) = theta e^{-theta x}$ be the probability density of $X_1$ and of $X_2$, and let $lambda_n$ denote the $n$-dimensional Lebesgue measure. Then $f_theta , dlambda_1 = dleft(mathbb P circ X_1^{-1}right)$. Furthermore, by independence of $X_1$ and $X_2$, the joint probability density is $tilde f(x,y) = theta^2 e^{-theta(x+y)}$, and $dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) = tilde f , dlambda_2$, where $X_1 times X_2 : Omega to mathbb R^2$ is $omega mapsto left(X_1(omega), X_2(omega)right)$. Let $A in sigma(X_1)$. Then,
begin{align*}
mathbb Eleft[left(X_1 wedge X_2 right)mathbb 1_A right] &= int_A X_1 wedge X_2 , dmathbb P = int_{X_1(A) times [0,infty)} x wedge y , dleft(mathbb P circ left(X_1 times X_2 right)^{-1}right) \
&= int_{X_1(A)} int_0^infty left(x wedge yright) theta^2 e^{-theta(x+y)} , dy , dx\ &= int_{X_1(A)} int_0^x theta^2 ye^{-theta(x+y)} , dy , dx + int_{X_1(A)} int_x^infty theta^2 x e^{-theta(x+y)} , dy , dx \
&= int_{X_1(A)} left(-theta x e^{-2theta x} - e^{-2theta x} + e^{-theta x}right) , dx + int_{X_1(A)} theta x e^{-2theta x},dx \
&= int_{X_1(A)} left(e^{-theta x} - e^{-2theta x}right),dx = int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right)theta e^{-theta x},dx \
&= int_{X_1(A)} frac 1 theta left(1-e^{-theta x}right) , dleft(mathbb P circ X_1^{-1}right)(x) = int_A frac 1 theta left(1-e^{-theta X_1}right) , dmathbb P \
&= mathbb Eleft[frac 1 theta left(1-e^{-theta X_1}right) mathbb 1_A right].
end{align*}
From this it follows that $boxed{mathbb Eleft[X_1 wedge X_2 | X_1right] = frac 1 theta left(1-e^{-theta X_1}right).}$
answered Jan 27 at 20:02
D FordD Ford
665313
665313
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086688%2fconditional-expectation-of-minimum-of-exponential-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You cannot answer this without any independence assumption.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 5:47
$begingroup$
Assuming independence, you might to try to find $mathbb E[k wedge X_2 ]$ for some constant $k ge 0$
$endgroup$
– Henry
Jan 25 at 8:49
$begingroup$
Ah yes, they are independent. I edited it.
$endgroup$
– D Ford
Jan 25 at 16:33
$begingroup$
@Henry I'm not sure how that helps if we assume independence. Is there an independence property you're invoking?
$endgroup$
– D Ford
Jan 25 at 16:34
$begingroup$
With independence, knowing $X_1=k$ tells you nothing new about the distribution of $X_2$, so my hint is helpful. Without independence, my suggestion would not help with the original question
$endgroup$
– Henry
Jan 25 at 16:41