Let $alpha, beta,gamma,delta $ be the eigenvalues of the matrix find $alpha ^2+beta^2+gamma^2+delta^2 $












1












$begingroup$



Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$



then $alpha ^2+beta^2+gamma^2+delta^2$ is ?




Matrix has determinant $|A|=0$



Thus one eigen value is zero. I assumed $delta=0$.



$trace(A)=alpha +beta+gamma=2$



$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$



I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.










share|cite|improve this question









$endgroup$








  • 5




    $begingroup$
    Why you do not compute $A^2$ and taking its trace?
    $endgroup$
    – Chinnapparaj R
    Jan 25 at 5:21










  • $begingroup$
    @ChinnapparajR oh yessss how in the world I forgot that thank you sir .
    $endgroup$
    – Daman deep
    Jan 25 at 5:23
















1












$begingroup$



Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$



then $alpha ^2+beta^2+gamma^2+delta^2$ is ?




Matrix has determinant $|A|=0$



Thus one eigen value is zero. I assumed $delta=0$.



$trace(A)=alpha +beta+gamma=2$



$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$



I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.










share|cite|improve this question









$endgroup$








  • 5




    $begingroup$
    Why you do not compute $A^2$ and taking its trace?
    $endgroup$
    – Chinnapparaj R
    Jan 25 at 5:21










  • $begingroup$
    @ChinnapparajR oh yessss how in the world I forgot that thank you sir .
    $endgroup$
    – Daman deep
    Jan 25 at 5:23














1












1








1





$begingroup$



Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$



then $alpha ^2+beta^2+gamma^2+delta^2$ is ?




Matrix has determinant $|A|=0$



Thus one eigen value is zero. I assumed $delta=0$.



$trace(A)=alpha +beta+gamma=2$



$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$



I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.










share|cite|improve this question









$endgroup$





Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$



then $alpha ^2+beta^2+gamma^2+delta^2$ is ?




Matrix has determinant $|A|=0$



Thus one eigen value is zero. I assumed $delta=0$.



$trace(A)=alpha +beta+gamma=2$



$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$



I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.







linear-algebra eigenvalues-eigenvectors






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 25 at 5:10









Daman deepDaman deep

756419




756419








  • 5




    $begingroup$
    Why you do not compute $A^2$ and taking its trace?
    $endgroup$
    – Chinnapparaj R
    Jan 25 at 5:21










  • $begingroup$
    @ChinnapparajR oh yessss how in the world I forgot that thank you sir .
    $endgroup$
    – Daman deep
    Jan 25 at 5:23














  • 5




    $begingroup$
    Why you do not compute $A^2$ and taking its trace?
    $endgroup$
    – Chinnapparaj R
    Jan 25 at 5:21










  • $begingroup$
    @ChinnapparajR oh yessss how in the world I forgot that thank you sir .
    $endgroup$
    – Daman deep
    Jan 25 at 5:23








5




5




$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21




$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21












$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23




$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23










1 Answer
1






active

oldest

votes


















1












$begingroup$

You did most of the work!



Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How did you calculate it $-1$? Can you add more steps ?
    $endgroup$
    – Daman deep
    Jan 25 at 5:34












  • $begingroup$
    Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:35










  • $begingroup$
    Can you tell me whole expression in general of characteristic polynomial of 4th degree?
    $endgroup$
    – Daman deep
    Jan 25 at 5:37












  • $begingroup$
    I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:41











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086736%2flet-alpha-beta-gamma-delta-be-the-eigenvalues-of-the-matrix-find-alpha%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

You did most of the work!



Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How did you calculate it $-1$? Can you add more steps ?
    $endgroup$
    – Daman deep
    Jan 25 at 5:34












  • $begingroup$
    Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:35










  • $begingroup$
    Can you tell me whole expression in general of characteristic polynomial of 4th degree?
    $endgroup$
    – Daman deep
    Jan 25 at 5:37












  • $begingroup$
    I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:41
















1












$begingroup$

You did most of the work!



Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How did you calculate it $-1$? Can you add more steps ?
    $endgroup$
    – Daman deep
    Jan 25 at 5:34












  • $begingroup$
    Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:35










  • $begingroup$
    Can you tell me whole expression in general of characteristic polynomial of 4th degree?
    $endgroup$
    – Daman deep
    Jan 25 at 5:37












  • $begingroup$
    I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:41














1












1








1





$begingroup$

You did most of the work!



Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$






share|cite|improve this answer









$endgroup$



You did most of the work!



Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 25 at 5:32









Stefan LafonStefan Lafon

2,96019




2,96019












  • $begingroup$
    How did you calculate it $-1$? Can you add more steps ?
    $endgroup$
    – Daman deep
    Jan 25 at 5:34












  • $begingroup$
    Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:35










  • $begingroup$
    Can you tell me whole expression in general of characteristic polynomial of 4th degree?
    $endgroup$
    – Daman deep
    Jan 25 at 5:37












  • $begingroup$
    I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:41


















  • $begingroup$
    How did you calculate it $-1$? Can you add more steps ?
    $endgroup$
    – Daman deep
    Jan 25 at 5:34












  • $begingroup$
    Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:35










  • $begingroup$
    Can you tell me whole expression in general of characteristic polynomial of 4th degree?
    $endgroup$
    – Daman deep
    Jan 25 at 5:37












  • $begingroup$
    I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
    $endgroup$
    – Stefan Lafon
    Jan 25 at 5:41
















$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34






$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34














$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35




$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35












$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37






$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37














$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41




$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086736%2flet-alpha-beta-gamma-delta-be-the-eigenvalues-of-the-matrix-find-alpha%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

'app-layout' is not a known element: how to share Component with different Modules