Let $alpha, beta,gamma,delta $ be the eigenvalues of the matrix find $alpha ^2+beta^2+gamma^2+delta^2 $
$begingroup$
Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$
then $alpha ^2+beta^2+gamma^2+delta^2$ is ?
Matrix has determinant $|A|=0$
Thus one eigen value is zero. I assumed $delta=0$.
$trace(A)=alpha +beta+gamma=2$
$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$
I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.
linear-algebra eigenvalues-eigenvectors
$endgroup$
add a comment |
$begingroup$
Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$
then $alpha ^2+beta^2+gamma^2+delta^2$ is ?
Matrix has determinant $|A|=0$
Thus one eigen value is zero. I assumed $delta=0$.
$trace(A)=alpha +beta+gamma=2$
$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$
I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.
linear-algebra eigenvalues-eigenvectors
$endgroup$
5
$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21
$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23
add a comment |
$begingroup$
Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$
then $alpha ^2+beta^2+gamma^2+delta^2$ is ?
Matrix has determinant $|A|=0$
Thus one eigen value is zero. I assumed $delta=0$.
$trace(A)=alpha +beta+gamma=2$
$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$
I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.
linear-algebra eigenvalues-eigenvectors
$endgroup$
Let $alpha, beta,gamma,delta $ be the eigen values of the matrix
$$ A=begin{pmatrix} 0 & 0 & 0& 0\ 1 & 0 & 0 &-2 \ 0 & 1 & 0 & 1
\ 0 & 0 &1 & 2 end{pmatrix} $$
then $alpha ^2+beta^2+gamma^2+delta^2$ is ?
Matrix has determinant $|A|=0$
Thus one eigen value is zero. I assumed $delta=0$.
$trace(A)=alpha +beta+gamma=2$
$alpha ^2+beta^2+gamma^2=(alpha +beta+gamma)^2-2(alpha beta+beta gamma+alpha gamma)=4-2(alpha beta+beta gamma+alpha gamma)$
I am not sure how to figure out $2(alpha beta+beta gamma+alpha gamma)$ term.I am not going for long method of finding eigen values by characteristic polynomial since this question came in $2$ marks so I am trying to find out quick way to solve this problem.
linear-algebra eigenvalues-eigenvectors
linear-algebra eigenvalues-eigenvectors
asked Jan 25 at 5:10
Daman deepDaman deep
756419
756419
5
$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21
$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23
add a comment |
5
$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21
$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23
5
5
$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21
$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21
$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23
$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You did most of the work!
Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$
$endgroup$
$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34
$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35
$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37
$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086736%2flet-alpha-beta-gamma-delta-be-the-eigenvalues-of-the-matrix-find-alpha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You did most of the work!
Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$
$endgroup$
$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34
$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35
$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37
$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41
add a comment |
$begingroup$
You did most of the work!
Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$
$endgroup$
$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34
$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35
$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37
$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41
add a comment |
$begingroup$
You did most of the work!
Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$
$endgroup$
You did most of the work!
Let $P(lambda)$ be $A$'s characteristic polynomial. Then $alpha beta+beta gamma+alpha gamma$ is the coefficient of $lambda^2$. To see this, write $$P(lambda)=lambda(lambda-alpha)(lambda-beta)(lambda-gamma)$$
If I'm correct, $P(lambda)=lambda^4-2lambda^3-lambda^2+2lambda$. So $alpha beta+beta gamma+alpha gamma=-1$.
So $$alpha ^2+beta^2+gamma^2+delta^2=6$$
answered Jan 25 at 5:32
Stefan LafonStefan Lafon
2,96019
2,96019
$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34
$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35
$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37
$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41
add a comment |
$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34
$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35
$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37
$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41
$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34
$begingroup$
How did you calculate it $-1$? Can you add more steps ?
$endgroup$
– Daman deep
Jan 25 at 5:34
$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35
$begingroup$
Look at the expression for $P(lambda)$, and take the coefficient in front of $lambda^2$. It is $-1$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:35
$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37
$begingroup$
Can you tell me whole expression in general of characteristic polynomial of 4th degree?
$endgroup$
– Daman deep
Jan 25 at 5:37
$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41
$begingroup$
I computed it from matrix $A$ via $P(lambda)=det(A-lambda I)$.
$endgroup$
– Stefan Lafon
Jan 25 at 5:41
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086736%2flet-alpha-beta-gamma-delta-be-the-eigenvalues-of-the-matrix-find-alpha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
$begingroup$
Why you do not compute $A^2$ and taking its trace?
$endgroup$
– Chinnapparaj R
Jan 25 at 5:21
$begingroup$
@ChinnapparajR oh yessss how in the world I forgot that thank you sir .
$endgroup$
– Daman deep
Jan 25 at 5:23