Cross product of two sets with vectors as elements.
$begingroup$
If $X in mathcal{X} = {x_1,x_2}$, for some $x_1,x_2 in mathbb{R}^{n times 1}$ and $Y in mathcal{Y} = {y_1,y_2}$, for some $y_1,y_2 in mathbb{R}^{m times 1}$, can I say that the stacked vector $Z = (X^T,Y^T)^T$ belongs to $mathcal{X} times mathcal{Y}$ ?
I think not, because $Z = (X^T,Y^T)^T in mathcal{Z} = left { begin{pmatrix} x_1 \ y_1 end{pmatrix}, begin{pmatrix} x_1 \ y_2 end{pmatrix}, begin{pmatrix} x_2 \ y_1 end{pmatrix}, begin{pmatrix} x_2 \ y_2 end{pmatrix} right}$, and
$
mathcal{X} times mathcal{Y} = { (x_1,y_1), (x_1,y_2), (x_2,y_1), (x_2,y_2) }.
$
Then, is there a way to write $mathcal{Z}$ in terms if $mathcal{X}$ and $mathcal{Y}$ ?
linear-algebra discrete-mathematics
$endgroup$
add a comment |
$begingroup$
If $X in mathcal{X} = {x_1,x_2}$, for some $x_1,x_2 in mathbb{R}^{n times 1}$ and $Y in mathcal{Y} = {y_1,y_2}$, for some $y_1,y_2 in mathbb{R}^{m times 1}$, can I say that the stacked vector $Z = (X^T,Y^T)^T$ belongs to $mathcal{X} times mathcal{Y}$ ?
I think not, because $Z = (X^T,Y^T)^T in mathcal{Z} = left { begin{pmatrix} x_1 \ y_1 end{pmatrix}, begin{pmatrix} x_1 \ y_2 end{pmatrix}, begin{pmatrix} x_2 \ y_1 end{pmatrix}, begin{pmatrix} x_2 \ y_2 end{pmatrix} right}$, and
$
mathcal{X} times mathcal{Y} = { (x_1,y_1), (x_1,y_2), (x_2,y_1), (x_2,y_2) }.
$
Then, is there a way to write $mathcal{Z}$ in terms if $mathcal{X}$ and $mathcal{Y}$ ?
linear-algebra discrete-mathematics
$endgroup$
add a comment |
$begingroup$
If $X in mathcal{X} = {x_1,x_2}$, for some $x_1,x_2 in mathbb{R}^{n times 1}$ and $Y in mathcal{Y} = {y_1,y_2}$, for some $y_1,y_2 in mathbb{R}^{m times 1}$, can I say that the stacked vector $Z = (X^T,Y^T)^T$ belongs to $mathcal{X} times mathcal{Y}$ ?
I think not, because $Z = (X^T,Y^T)^T in mathcal{Z} = left { begin{pmatrix} x_1 \ y_1 end{pmatrix}, begin{pmatrix} x_1 \ y_2 end{pmatrix}, begin{pmatrix} x_2 \ y_1 end{pmatrix}, begin{pmatrix} x_2 \ y_2 end{pmatrix} right}$, and
$
mathcal{X} times mathcal{Y} = { (x_1,y_1), (x_1,y_2), (x_2,y_1), (x_2,y_2) }.
$
Then, is there a way to write $mathcal{Z}$ in terms if $mathcal{X}$ and $mathcal{Y}$ ?
linear-algebra discrete-mathematics
$endgroup$
If $X in mathcal{X} = {x_1,x_2}$, for some $x_1,x_2 in mathbb{R}^{n times 1}$ and $Y in mathcal{Y} = {y_1,y_2}$, for some $y_1,y_2 in mathbb{R}^{m times 1}$, can I say that the stacked vector $Z = (X^T,Y^T)^T$ belongs to $mathcal{X} times mathcal{Y}$ ?
I think not, because $Z = (X^T,Y^T)^T in mathcal{Z} = left { begin{pmatrix} x_1 \ y_1 end{pmatrix}, begin{pmatrix} x_1 \ y_2 end{pmatrix}, begin{pmatrix} x_2 \ y_1 end{pmatrix}, begin{pmatrix} x_2 \ y_2 end{pmatrix} right}$, and
$
mathcal{X} times mathcal{Y} = { (x_1,y_1), (x_1,y_2), (x_2,y_1), (x_2,y_2) }.
$
Then, is there a way to write $mathcal{Z}$ in terms if $mathcal{X}$ and $mathcal{Y}$ ?
linear-algebra discrete-mathematics
linear-algebra discrete-mathematics
edited Jan 25 at 5:15
Henno Brandsma
113k348122
113k348122
asked Jan 25 at 5:09
OliVerOliVer
718
718
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Firstly, it seems that you've already defined the transpose $$(cdot)^T : bigcup_{n=1}^infty (mathbb{R}^{n}cupmathbb{R}^{n times 1}) rightarrow bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$$
for all row and column vectors (I'm just using plain $mathbb{R}^n$ for the "rows" rather than $mathbb{R}^{1 times n}$).
So the image of subsets $A subseteq bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$ under $(cdot)^T$ are defined already as
$$(cdot)^T(A) = {x^T mid x in A}$$
so for readability you might as well define
$$A^T = (cdot)^T(A)$$
This means that you can define $mathcal{Z}$ as
$$mathcal{Z} = (mathcal{X}^T times mathcal{Y}^T)^T$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086735%2fcross-product-of-two-sets-with-vectors-as-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Firstly, it seems that you've already defined the transpose $$(cdot)^T : bigcup_{n=1}^infty (mathbb{R}^{n}cupmathbb{R}^{n times 1}) rightarrow bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$$
for all row and column vectors (I'm just using plain $mathbb{R}^n$ for the "rows" rather than $mathbb{R}^{1 times n}$).
So the image of subsets $A subseteq bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$ under $(cdot)^T$ are defined already as
$$(cdot)^T(A) = {x^T mid x in A}$$
so for readability you might as well define
$$A^T = (cdot)^T(A)$$
This means that you can define $mathcal{Z}$ as
$$mathcal{Z} = (mathcal{X}^T times mathcal{Y}^T)^T$$
$endgroup$
add a comment |
$begingroup$
Firstly, it seems that you've already defined the transpose $$(cdot)^T : bigcup_{n=1}^infty (mathbb{R}^{n}cupmathbb{R}^{n times 1}) rightarrow bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$$
for all row and column vectors (I'm just using plain $mathbb{R}^n$ for the "rows" rather than $mathbb{R}^{1 times n}$).
So the image of subsets $A subseteq bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$ under $(cdot)^T$ are defined already as
$$(cdot)^T(A) = {x^T mid x in A}$$
so for readability you might as well define
$$A^T = (cdot)^T(A)$$
This means that you can define $mathcal{Z}$ as
$$mathcal{Z} = (mathcal{X}^T times mathcal{Y}^T)^T$$
$endgroup$
add a comment |
$begingroup$
Firstly, it seems that you've already defined the transpose $$(cdot)^T : bigcup_{n=1}^infty (mathbb{R}^{n}cupmathbb{R}^{n times 1}) rightarrow bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$$
for all row and column vectors (I'm just using plain $mathbb{R}^n$ for the "rows" rather than $mathbb{R}^{1 times n}$).
So the image of subsets $A subseteq bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$ under $(cdot)^T$ are defined already as
$$(cdot)^T(A) = {x^T mid x in A}$$
so for readability you might as well define
$$A^T = (cdot)^T(A)$$
This means that you can define $mathcal{Z}$ as
$$mathcal{Z} = (mathcal{X}^T times mathcal{Y}^T)^T$$
$endgroup$
Firstly, it seems that you've already defined the transpose $$(cdot)^T : bigcup_{n=1}^infty (mathbb{R}^{n}cupmathbb{R}^{n times 1}) rightarrow bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$$
for all row and column vectors (I'm just using plain $mathbb{R}^n$ for the "rows" rather than $mathbb{R}^{1 times n}$).
So the image of subsets $A subseteq bigcup_{n=1}^infty (mathbb{R}^{n}cup mathbb{R}^{n times 1})$ under $(cdot)^T$ are defined already as
$$(cdot)^T(A) = {x^T mid x in A}$$
so for readability you might as well define
$$A^T = (cdot)^T(A)$$
This means that you can define $mathcal{Z}$ as
$$mathcal{Z} = (mathcal{X}^T times mathcal{Y}^T)^T$$
answered Jan 27 at 2:04
MetricMetric
1,25159
1,25159
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086735%2fcross-product-of-two-sets-with-vectors-as-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown