Archimedean equivalence. Proof of $ [g+h] geq min{ [g], [h] }$
$begingroup$
Prove that: $ [g+h] geq min{[g],[h]}$
Definitons:
Take any ordered abelian field $(G, leq)$. Two elements $g,h in G$ are archimedean equivalent if $exists n,n' in Bbb{N}$ : $n|g| geq |h|$ and $n'|h| geq |g|$.
$[g]$ denotes the equivalence class of $g$.
Attempt of proof:
Suppose that $ min{ [g], [h] }= [h]$
$[h] = {g: exists n_1, n_1' $such that$ n_1|h| geq |g| $and$ n_1'|g| geq |h|} $
$[h+g] ={ k: exists n_2, n_2' $such that$ n_2|g+h| geq |k| $and$ n_2'|k| geq |g+h| }$
I have to show that $k>g$ so I have to show that $ng<k$ for all $n in Bbb{N}$. From my assumption $[h] < [g]$ so it implies $|h| > |g|$ and $[g] neq[h]$. I am not sure what to do know. I have tried to multiply these inequalities by an inverse element for example of $n_1, n_1'$. I can also use the fact: $[g] geq [h]$ for all $h in G$ iff $g=0$.
real-analysis order-theory
$endgroup$
add a comment |
$begingroup$
Prove that: $ [g+h] geq min{[g],[h]}$
Definitons:
Take any ordered abelian field $(G, leq)$. Two elements $g,h in G$ are archimedean equivalent if $exists n,n' in Bbb{N}$ : $n|g| geq |h|$ and $n'|h| geq |g|$.
$[g]$ denotes the equivalence class of $g$.
Attempt of proof:
Suppose that $ min{ [g], [h] }= [h]$
$[h] = {g: exists n_1, n_1' $such that$ n_1|h| geq |g| $and$ n_1'|g| geq |h|} $
$[h+g] ={ k: exists n_2, n_2' $such that$ n_2|g+h| geq |k| $and$ n_2'|k| geq |g+h| }$
I have to show that $k>g$ so I have to show that $ng<k$ for all $n in Bbb{N}$. From my assumption $[h] < [g]$ so it implies $|h| > |g|$ and $[g] neq[h]$. I am not sure what to do know. I have tried to multiply these inequalities by an inverse element for example of $n_1, n_1'$. I can also use the fact: $[g] geq [h]$ for all $h in G$ iff $g=0$.
real-analysis order-theory
$endgroup$
$begingroup$
Use$min$
for $min$.
$endgroup$
– Shaun
Jan 22 at 15:46
add a comment |
$begingroup$
Prove that: $ [g+h] geq min{[g],[h]}$
Definitons:
Take any ordered abelian field $(G, leq)$. Two elements $g,h in G$ are archimedean equivalent if $exists n,n' in Bbb{N}$ : $n|g| geq |h|$ and $n'|h| geq |g|$.
$[g]$ denotes the equivalence class of $g$.
Attempt of proof:
Suppose that $ min{ [g], [h] }= [h]$
$[h] = {g: exists n_1, n_1' $such that$ n_1|h| geq |g| $and$ n_1'|g| geq |h|} $
$[h+g] ={ k: exists n_2, n_2' $such that$ n_2|g+h| geq |k| $and$ n_2'|k| geq |g+h| }$
I have to show that $k>g$ so I have to show that $ng<k$ for all $n in Bbb{N}$. From my assumption $[h] < [g]$ so it implies $|h| > |g|$ and $[g] neq[h]$. I am not sure what to do know. I have tried to multiply these inequalities by an inverse element for example of $n_1, n_1'$. I can also use the fact: $[g] geq [h]$ for all $h in G$ iff $g=0$.
real-analysis order-theory
$endgroup$
Prove that: $ [g+h] geq min{[g],[h]}$
Definitons:
Take any ordered abelian field $(G, leq)$. Two elements $g,h in G$ are archimedean equivalent if $exists n,n' in Bbb{N}$ : $n|g| geq |h|$ and $n'|h| geq |g|$.
$[g]$ denotes the equivalence class of $g$.
Attempt of proof:
Suppose that $ min{ [g], [h] }= [h]$
$[h] = {g: exists n_1, n_1' $such that$ n_1|h| geq |g| $and$ n_1'|g| geq |h|} $
$[h+g] ={ k: exists n_2, n_2' $such that$ n_2|g+h| geq |k| $and$ n_2'|k| geq |g+h| }$
I have to show that $k>g$ so I have to show that $ng<k$ for all $n in Bbb{N}$. From my assumption $[h] < [g]$ so it implies $|h| > |g|$ and $[g] neq[h]$. I am not sure what to do know. I have tried to multiply these inequalities by an inverse element for example of $n_1, n_1'$. I can also use the fact: $[g] geq [h]$ for all $h in G$ iff $g=0$.
real-analysis order-theory
real-analysis order-theory
edited Jan 22 at 17:32
Hikicianka
asked Jan 22 at 15:39
HikiciankaHikicianka
1498
1498
$begingroup$
Use$min$
for $min$.
$endgroup$
– Shaun
Jan 22 at 15:46
add a comment |
$begingroup$
Use$min$
for $min$.
$endgroup$
– Shaun
Jan 22 at 15:46
$begingroup$
Use
$min$
for $min$.$endgroup$
– Shaun
Jan 22 at 15:46
$begingroup$
Use
$min$
for $min$.$endgroup$
– Shaun
Jan 22 at 15:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Assume that $ [g+h] < min([g],[h]) $. Let $ [g] = min([g], [h]) Longrightarrow [g] > [h] Longleftrightarrow forall_{n in mathbb{N}} ; |g| > n|h|$.
From assumption we have $ ; [g + h] < [g] Longrightarrow |g| < |g + h| ; text{and} ; [g + h] neq [g] $.
We know that
$$
|g| < |g + h| Longleftrightarrow forall_{n in mathbb{N}} ; n|g| < |g + h| leq |g| + |h| Longrightarrow (n - 1)|g| < |g + h| - |g| leq |h| \
Longrightarrow (n - 1)|g| < |h|
$$
So we have $$forall_{n in mathbb{N}} ; (n - 1)|g| < |h| quad wedge quad |g| > n|h| $$
Hence it doesn't true then $ [g+h] geq min([g],[h]) $. $square$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083311%2farchimedean-equivalence-proof-of-gh-geq-min-g-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Assume that $ [g+h] < min([g],[h]) $. Let $ [g] = min([g], [h]) Longrightarrow [g] > [h] Longleftrightarrow forall_{n in mathbb{N}} ; |g| > n|h|$.
From assumption we have $ ; [g + h] < [g] Longrightarrow |g| < |g + h| ; text{and} ; [g + h] neq [g] $.
We know that
$$
|g| < |g + h| Longleftrightarrow forall_{n in mathbb{N}} ; n|g| < |g + h| leq |g| + |h| Longrightarrow (n - 1)|g| < |g + h| - |g| leq |h| \
Longrightarrow (n - 1)|g| < |h|
$$
So we have $$forall_{n in mathbb{N}} ; (n - 1)|g| < |h| quad wedge quad |g| > n|h| $$
Hence it doesn't true then $ [g+h] geq min([g],[h]) $. $square$
$endgroup$
add a comment |
$begingroup$
Assume that $ [g+h] < min([g],[h]) $. Let $ [g] = min([g], [h]) Longrightarrow [g] > [h] Longleftrightarrow forall_{n in mathbb{N}} ; |g| > n|h|$.
From assumption we have $ ; [g + h] < [g] Longrightarrow |g| < |g + h| ; text{and} ; [g + h] neq [g] $.
We know that
$$
|g| < |g + h| Longleftrightarrow forall_{n in mathbb{N}} ; n|g| < |g + h| leq |g| + |h| Longrightarrow (n - 1)|g| < |g + h| - |g| leq |h| \
Longrightarrow (n - 1)|g| < |h|
$$
So we have $$forall_{n in mathbb{N}} ; (n - 1)|g| < |h| quad wedge quad |g| > n|h| $$
Hence it doesn't true then $ [g+h] geq min([g],[h]) $. $square$
$endgroup$
add a comment |
$begingroup$
Assume that $ [g+h] < min([g],[h]) $. Let $ [g] = min([g], [h]) Longrightarrow [g] > [h] Longleftrightarrow forall_{n in mathbb{N}} ; |g| > n|h|$.
From assumption we have $ ; [g + h] < [g] Longrightarrow |g| < |g + h| ; text{and} ; [g + h] neq [g] $.
We know that
$$
|g| < |g + h| Longleftrightarrow forall_{n in mathbb{N}} ; n|g| < |g + h| leq |g| + |h| Longrightarrow (n - 1)|g| < |g + h| - |g| leq |h| \
Longrightarrow (n - 1)|g| < |h|
$$
So we have $$forall_{n in mathbb{N}} ; (n - 1)|g| < |h| quad wedge quad |g| > n|h| $$
Hence it doesn't true then $ [g+h] geq min([g],[h]) $. $square$
$endgroup$
Assume that $ [g+h] < min([g],[h]) $. Let $ [g] = min([g], [h]) Longrightarrow [g] > [h] Longleftrightarrow forall_{n in mathbb{N}} ; |g| > n|h|$.
From assumption we have $ ; [g + h] < [g] Longrightarrow |g| < |g + h| ; text{and} ; [g + h] neq [g] $.
We know that
$$
|g| < |g + h| Longleftrightarrow forall_{n in mathbb{N}} ; n|g| < |g + h| leq |g| + |h| Longrightarrow (n - 1)|g| < |g + h| - |g| leq |h| \
Longrightarrow (n - 1)|g| < |h|
$$
So we have $$forall_{n in mathbb{N}} ; (n - 1)|g| < |h| quad wedge quad |g| > n|h| $$
Hence it doesn't true then $ [g+h] geq min([g],[h]) $. $square$
answered Feb 6 at 19:39
nowek7nowek7
383
383
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083311%2farchimedean-equivalence-proof-of-gh-geq-min-g-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Use
$min$
for $min$.$endgroup$
– Shaun
Jan 22 at 15:46