Induced inner product on tensor powers.












1












$begingroup$


Let $V$ be a real or complex inner product space with inner product $leftlangle cdotp,cdotprightrangle$. For $otimes ^kV$ define $leftlangle cdotp,cdotprightrangle_k$ by
$$leftlangle u_1otimes ...otimes u_k,v_1otimes ...otimes v_krightrangle_k = leftlangle u_1,v_1rightrangle...leftlangle u_k,v_krightrangle$$
on pure tensors, and extend bilinearly.



Is the resulting object $leftlangle cdotp,cdotprightrangle_k$ an inner product on $otimes ^kV$? It is clearly a symmetric bilinear form. Is it non-degenerate and positive definite though?










share|cite|improve this question









$endgroup$












  • $begingroup$
    do $v_i=u_i$ for all the $i$ and infer
    $endgroup$
    – janmarqz
    Jan 26 at 17:35










  • $begingroup$
    That only gives the result for tensors of the particular form above.
    $endgroup$
    – Joshua Tilley
    Jan 29 at 19:25










  • $begingroup$
    you need to do that in order to check your last question
    $endgroup$
    – janmarqz
    Jan 30 at 3:23


















1












$begingroup$


Let $V$ be a real or complex inner product space with inner product $leftlangle cdotp,cdotprightrangle$. For $otimes ^kV$ define $leftlangle cdotp,cdotprightrangle_k$ by
$$leftlangle u_1otimes ...otimes u_k,v_1otimes ...otimes v_krightrangle_k = leftlangle u_1,v_1rightrangle...leftlangle u_k,v_krightrangle$$
on pure tensors, and extend bilinearly.



Is the resulting object $leftlangle cdotp,cdotprightrangle_k$ an inner product on $otimes ^kV$? It is clearly a symmetric bilinear form. Is it non-degenerate and positive definite though?










share|cite|improve this question









$endgroup$












  • $begingroup$
    do $v_i=u_i$ for all the $i$ and infer
    $endgroup$
    – janmarqz
    Jan 26 at 17:35










  • $begingroup$
    That only gives the result for tensors of the particular form above.
    $endgroup$
    – Joshua Tilley
    Jan 29 at 19:25










  • $begingroup$
    you need to do that in order to check your last question
    $endgroup$
    – janmarqz
    Jan 30 at 3:23
















1












1








1





$begingroup$


Let $V$ be a real or complex inner product space with inner product $leftlangle cdotp,cdotprightrangle$. For $otimes ^kV$ define $leftlangle cdotp,cdotprightrangle_k$ by
$$leftlangle u_1otimes ...otimes u_k,v_1otimes ...otimes v_krightrangle_k = leftlangle u_1,v_1rightrangle...leftlangle u_k,v_krightrangle$$
on pure tensors, and extend bilinearly.



Is the resulting object $leftlangle cdotp,cdotprightrangle_k$ an inner product on $otimes ^kV$? It is clearly a symmetric bilinear form. Is it non-degenerate and positive definite though?










share|cite|improve this question









$endgroup$




Let $V$ be a real or complex inner product space with inner product $leftlangle cdotp,cdotprightrangle$. For $otimes ^kV$ define $leftlangle cdotp,cdotprightrangle_k$ by
$$leftlangle u_1otimes ...otimes u_k,v_1otimes ...otimes v_krightrangle_k = leftlangle u_1,v_1rightrangle...leftlangle u_k,v_krightrangle$$
on pure tensors, and extend bilinearly.



Is the resulting object $leftlangle cdotp,cdotprightrangle_k$ an inner product on $otimes ^kV$? It is clearly a symmetric bilinear form. Is it non-degenerate and positive definite though?







linear-algebra inner-product-space tensor-products multilinear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 22 at 15:23









Joshua TilleyJoshua Tilley

556313




556313












  • $begingroup$
    do $v_i=u_i$ for all the $i$ and infer
    $endgroup$
    – janmarqz
    Jan 26 at 17:35










  • $begingroup$
    That only gives the result for tensors of the particular form above.
    $endgroup$
    – Joshua Tilley
    Jan 29 at 19:25










  • $begingroup$
    you need to do that in order to check your last question
    $endgroup$
    – janmarqz
    Jan 30 at 3:23




















  • $begingroup$
    do $v_i=u_i$ for all the $i$ and infer
    $endgroup$
    – janmarqz
    Jan 26 at 17:35










  • $begingroup$
    That only gives the result for tensors of the particular form above.
    $endgroup$
    – Joshua Tilley
    Jan 29 at 19:25










  • $begingroup$
    you need to do that in order to check your last question
    $endgroup$
    – janmarqz
    Jan 30 at 3:23


















$begingroup$
do $v_i=u_i$ for all the $i$ and infer
$endgroup$
– janmarqz
Jan 26 at 17:35




$begingroup$
do $v_i=u_i$ for all the $i$ and infer
$endgroup$
– janmarqz
Jan 26 at 17:35












$begingroup$
That only gives the result for tensors of the particular form above.
$endgroup$
– Joshua Tilley
Jan 29 at 19:25




$begingroup$
That only gives the result for tensors of the particular form above.
$endgroup$
– Joshua Tilley
Jan 29 at 19:25












$begingroup$
you need to do that in order to check your last question
$endgroup$
– janmarqz
Jan 30 at 3:23






$begingroup$
you need to do that in order to check your last question
$endgroup$
– janmarqz
Jan 30 at 3:23












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083295%2finduced-inner-product-on-tensor-powers%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083295%2finduced-inner-product-on-tensor-powers%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

'app-layout' is not a known element: how to share Component with different Modules