Non-constant function with 0 Lipschitz semi-norm
$begingroup$
Suppose we have a bounded metric space $(X,d)$. We say a function $f:Xto mathbb{R}$ is Lipschitz if
$|f|=sup_{substack{xneq y\x,yin X}}frac{left|f(x)-f(y)right|}{d(x,y)}<infty$.
This is a semi-norm. For example any constant function $f$ has $|f|=0$. Is there a non-constant function $f$ with $|f|=0$? My guess is no, but I can't seem to convince myself. Apologies if this is a trivial question. Thanks in advance
metric-spaces norm examples-counterexamples normed-spaces lipschitz-functions
$endgroup$
add a comment |
$begingroup$
Suppose we have a bounded metric space $(X,d)$. We say a function $f:Xto mathbb{R}$ is Lipschitz if
$|f|=sup_{substack{xneq y\x,yin X}}frac{left|f(x)-f(y)right|}{d(x,y)}<infty$.
This is a semi-norm. For example any constant function $f$ has $|f|=0$. Is there a non-constant function $f$ with $|f|=0$? My guess is no, but I can't seem to convince myself. Apologies if this is a trivial question. Thanks in advance
metric-spaces norm examples-counterexamples normed-spaces lipschitz-functions
$endgroup$
add a comment |
$begingroup$
Suppose we have a bounded metric space $(X,d)$. We say a function $f:Xto mathbb{R}$ is Lipschitz if
$|f|=sup_{substack{xneq y\x,yin X}}frac{left|f(x)-f(y)right|}{d(x,y)}<infty$.
This is a semi-norm. For example any constant function $f$ has $|f|=0$. Is there a non-constant function $f$ with $|f|=0$? My guess is no, but I can't seem to convince myself. Apologies if this is a trivial question. Thanks in advance
metric-spaces norm examples-counterexamples normed-spaces lipschitz-functions
$endgroup$
Suppose we have a bounded metric space $(X,d)$. We say a function $f:Xto mathbb{R}$ is Lipschitz if
$|f|=sup_{substack{xneq y\x,yin X}}frac{left|f(x)-f(y)right|}{d(x,y)}<infty$.
This is a semi-norm. For example any constant function $f$ has $|f|=0$. Is there a non-constant function $f$ with $|f|=0$? My guess is no, but I can't seem to convince myself. Apologies if this is a trivial question. Thanks in advance
metric-spaces norm examples-counterexamples normed-spaces lipschitz-functions
metric-spaces norm examples-counterexamples normed-spaces lipschitz-functions
asked Jan 22 at 14:59
Mr MartingaleMr Martingale
25417
25417
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $|f|=0$, then for any $xneq y$, $|f(x)-f(y)| leq |f| d(x,y)=0$ so $f(x)=f(y)$. Thus $f$ is constant.
$endgroup$
$begingroup$
This made me smile. I am convinced!
$endgroup$
– Mr Martingale
Jan 22 at 15:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083273%2fnon-constant-function-with-0-lipschitz-semi-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $|f|=0$, then for any $xneq y$, $|f(x)-f(y)| leq |f| d(x,y)=0$ so $f(x)=f(y)$. Thus $f$ is constant.
$endgroup$
$begingroup$
This made me smile. I am convinced!
$endgroup$
– Mr Martingale
Jan 22 at 15:04
add a comment |
$begingroup$
If $|f|=0$, then for any $xneq y$, $|f(x)-f(y)| leq |f| d(x,y)=0$ so $f(x)=f(y)$. Thus $f$ is constant.
$endgroup$
$begingroup$
This made me smile. I am convinced!
$endgroup$
– Mr Martingale
Jan 22 at 15:04
add a comment |
$begingroup$
If $|f|=0$, then for any $xneq y$, $|f(x)-f(y)| leq |f| d(x,y)=0$ so $f(x)=f(y)$. Thus $f$ is constant.
$endgroup$
If $|f|=0$, then for any $xneq y$, $|f(x)-f(y)| leq |f| d(x,y)=0$ so $f(x)=f(y)$. Thus $f$ is constant.
answered Jan 22 at 15:01
MindlackMindlack
4,920211
4,920211
$begingroup$
This made me smile. I am convinced!
$endgroup$
– Mr Martingale
Jan 22 at 15:04
add a comment |
$begingroup$
This made me smile. I am convinced!
$endgroup$
– Mr Martingale
Jan 22 at 15:04
$begingroup$
This made me smile. I am convinced!
$endgroup$
– Mr Martingale
Jan 22 at 15:04
$begingroup$
This made me smile. I am convinced!
$endgroup$
– Mr Martingale
Jan 22 at 15:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083273%2fnon-constant-function-with-0-lipschitz-semi-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown