Meaningful State Representations with Autoencoders & Embedding Layers
As I understand, Embedding Layers are simply lookup matrices, weights of which are learned by the optimisation problem.
Suppose, for this example, my dataset contains a single categorical variable. For example, I would like to auto encode a sentence of words to itself, to learn the sentence representation.
# example model
input = tf.keras.layers.Input()
embed = tf.keras.layers.Embedding(99)(input)
encoder = tf.keras.layers.LSTM()(embed)
decoder = tf.keras.layers.LSTM()(encoder)
model = tf.keras.models.Model(input, decoder)
The error will minimise the difference between embed
and decoder
outputs.
However, since embeddings are learned depending on optimisation condition, I think that I will end up learning trivial representations e.g.
the embedding matrix is all ones, and decoder always outputs ones. (Or zeros even), giving me a 100% accuracy in training.
For example, in the embedding matrix all words are just a vector of ones, and the auto encoder simply returns ones.
What I would like to do is to learn a meaningful representation of categorical variables.
python tensorflow keras
add a comment |
As I understand, Embedding Layers are simply lookup matrices, weights of which are learned by the optimisation problem.
Suppose, for this example, my dataset contains a single categorical variable. For example, I would like to auto encode a sentence of words to itself, to learn the sentence representation.
# example model
input = tf.keras.layers.Input()
embed = tf.keras.layers.Embedding(99)(input)
encoder = tf.keras.layers.LSTM()(embed)
decoder = tf.keras.layers.LSTM()(encoder)
model = tf.keras.models.Model(input, decoder)
The error will minimise the difference between embed
and decoder
outputs.
However, since embeddings are learned depending on optimisation condition, I think that I will end up learning trivial representations e.g.
the embedding matrix is all ones, and decoder always outputs ones. (Or zeros even), giving me a 100% accuracy in training.
For example, in the embedding matrix all words are just a vector of ones, and the auto encoder simply returns ones.
What I would like to do is to learn a meaningful representation of categorical variables.
python tensorflow keras
add a comment |
As I understand, Embedding Layers are simply lookup matrices, weights of which are learned by the optimisation problem.
Suppose, for this example, my dataset contains a single categorical variable. For example, I would like to auto encode a sentence of words to itself, to learn the sentence representation.
# example model
input = tf.keras.layers.Input()
embed = tf.keras.layers.Embedding(99)(input)
encoder = tf.keras.layers.LSTM()(embed)
decoder = tf.keras.layers.LSTM()(encoder)
model = tf.keras.models.Model(input, decoder)
The error will minimise the difference between embed
and decoder
outputs.
However, since embeddings are learned depending on optimisation condition, I think that I will end up learning trivial representations e.g.
the embedding matrix is all ones, and decoder always outputs ones. (Or zeros even), giving me a 100% accuracy in training.
For example, in the embedding matrix all words are just a vector of ones, and the auto encoder simply returns ones.
What I would like to do is to learn a meaningful representation of categorical variables.
python tensorflow keras
As I understand, Embedding Layers are simply lookup matrices, weights of which are learned by the optimisation problem.
Suppose, for this example, my dataset contains a single categorical variable. For example, I would like to auto encode a sentence of words to itself, to learn the sentence representation.
# example model
input = tf.keras.layers.Input()
embed = tf.keras.layers.Embedding(99)(input)
encoder = tf.keras.layers.LSTM()(embed)
decoder = tf.keras.layers.LSTM()(encoder)
model = tf.keras.models.Model(input, decoder)
The error will minimise the difference between embed
and decoder
outputs.
However, since embeddings are learned depending on optimisation condition, I think that I will end up learning trivial representations e.g.
the embedding matrix is all ones, and decoder always outputs ones. (Or zeros even), giving me a 100% accuracy in training.
For example, in the embedding matrix all words are just a vector of ones, and the auto encoder simply returns ones.
What I would like to do is to learn a meaningful representation of categorical variables.
python tensorflow keras
python tensorflow keras
edited Jan 1 at 16:48
user10430178
asked Jan 1 at 15:06
user10430178user10430178
856
856
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53996520%2fmeaningful-state-representations-with-autoencoders-embedding-layers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53996520%2fmeaningful-state-representations-with-autoencoders-embedding-layers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown