Closed form expression for the harmonic sum $sumlimits_{n=1}^{infty}frac{H_{2n}}{n^2cdot4^n}{2n choose n}$
$begingroup$
I'm wondering if one could derive a closed form expression for the series
$$sum_{n=1}^{infty}frac{H_{2n}}{n^2cdot4^n}{2n choose n}$$
$$text{With } text{ } text{ } text{ }H_n=sum_{k=1}^{n}frac{1}{k}text{ } text{ } text{} text{ } text{ }text{the } n^{th} text{ harmonic number.}$$
Now, I know series involving harmonic numbers are well suited for a summation by part (or Abel's transformation) approach, but it doesn't lead anywere here, at least not in this state.
Any suggestions ?
real-analysis calculus sequences-and-series summation
$endgroup$
add a comment |
$begingroup$
I'm wondering if one could derive a closed form expression for the series
$$sum_{n=1}^{infty}frac{H_{2n}}{n^2cdot4^n}{2n choose n}$$
$$text{With } text{ } text{ } text{ }H_n=sum_{k=1}^{n}frac{1}{k}text{ } text{ } text{} text{ } text{ }text{the } n^{th} text{ harmonic number.}$$
Now, I know series involving harmonic numbers are well suited for a summation by part (or Abel's transformation) approach, but it doesn't lead anywere here, at least not in this state.
Any suggestions ?
real-analysis calculus sequences-and-series summation
$endgroup$
$begingroup$
Don't you mean $H_n=sum_{k=1}^{n}frac{1}{k}$?
$endgroup$
– James Arathoon
Jan 24 at 1:13
$begingroup$
Oh yes sorry, now it's corrected !
$endgroup$
– Harmonic Sun
Jan 24 at 1:14
$begingroup$
Would the fact that $frac{{2nchoose n}}{4^n}=frac{1}{2pi}int_0^{2pi} cos^{2n} x,dx$ be useful if you can switch integration and summation?
$endgroup$
– Zachary
Jan 24 at 1:47
$begingroup$
Looks like a very good idea, but as far as I know there is no known closed form for the power series $sumlimits_{n=1}^{infty}frac{H_{2n}}{n^2}x^{2n}$... And even if there were, I guess we would eventually get a very nasty looking integral, especially after composing with the cosine function...
$endgroup$
– Harmonic Sun
Jan 24 at 2:32
add a comment |
$begingroup$
I'm wondering if one could derive a closed form expression for the series
$$sum_{n=1}^{infty}frac{H_{2n}}{n^2cdot4^n}{2n choose n}$$
$$text{With } text{ } text{ } text{ }H_n=sum_{k=1}^{n}frac{1}{k}text{ } text{ } text{} text{ } text{ }text{the } n^{th} text{ harmonic number.}$$
Now, I know series involving harmonic numbers are well suited for a summation by part (or Abel's transformation) approach, but it doesn't lead anywere here, at least not in this state.
Any suggestions ?
real-analysis calculus sequences-and-series summation
$endgroup$
I'm wondering if one could derive a closed form expression for the series
$$sum_{n=1}^{infty}frac{H_{2n}}{n^2cdot4^n}{2n choose n}$$
$$text{With } text{ } text{ } text{ }H_n=sum_{k=1}^{n}frac{1}{k}text{ } text{ } text{} text{ } text{ }text{the } n^{th} text{ harmonic number.}$$
Now, I know series involving harmonic numbers are well suited for a summation by part (or Abel's transformation) approach, but it doesn't lead anywere here, at least not in this state.
Any suggestions ?
real-analysis calculus sequences-and-series summation
real-analysis calculus sequences-and-series summation
edited Jan 24 at 1:14
Harmonic Sun
asked Jan 24 at 1:02


Harmonic SunHarmonic Sun
65210
65210
$begingroup$
Don't you mean $H_n=sum_{k=1}^{n}frac{1}{k}$?
$endgroup$
– James Arathoon
Jan 24 at 1:13
$begingroup$
Oh yes sorry, now it's corrected !
$endgroup$
– Harmonic Sun
Jan 24 at 1:14
$begingroup$
Would the fact that $frac{{2nchoose n}}{4^n}=frac{1}{2pi}int_0^{2pi} cos^{2n} x,dx$ be useful if you can switch integration and summation?
$endgroup$
– Zachary
Jan 24 at 1:47
$begingroup$
Looks like a very good idea, but as far as I know there is no known closed form for the power series $sumlimits_{n=1}^{infty}frac{H_{2n}}{n^2}x^{2n}$... And even if there were, I guess we would eventually get a very nasty looking integral, especially after composing with the cosine function...
$endgroup$
– Harmonic Sun
Jan 24 at 2:32
add a comment |
$begingroup$
Don't you mean $H_n=sum_{k=1}^{n}frac{1}{k}$?
$endgroup$
– James Arathoon
Jan 24 at 1:13
$begingroup$
Oh yes sorry, now it's corrected !
$endgroup$
– Harmonic Sun
Jan 24 at 1:14
$begingroup$
Would the fact that $frac{{2nchoose n}}{4^n}=frac{1}{2pi}int_0^{2pi} cos^{2n} x,dx$ be useful if you can switch integration and summation?
$endgroup$
– Zachary
Jan 24 at 1:47
$begingroup$
Looks like a very good idea, but as far as I know there is no known closed form for the power series $sumlimits_{n=1}^{infty}frac{H_{2n}}{n^2}x^{2n}$... And even if there were, I guess we would eventually get a very nasty looking integral, especially after composing with the cosine function...
$endgroup$
– Harmonic Sun
Jan 24 at 2:32
$begingroup$
Don't you mean $H_n=sum_{k=1}^{n}frac{1}{k}$?
$endgroup$
– James Arathoon
Jan 24 at 1:13
$begingroup$
Don't you mean $H_n=sum_{k=1}^{n}frac{1}{k}$?
$endgroup$
– James Arathoon
Jan 24 at 1:13
$begingroup$
Oh yes sorry, now it's corrected !
$endgroup$
– Harmonic Sun
Jan 24 at 1:14
$begingroup$
Oh yes sorry, now it's corrected !
$endgroup$
– Harmonic Sun
Jan 24 at 1:14
$begingroup$
Would the fact that $frac{{2nchoose n}}{4^n}=frac{1}{2pi}int_0^{2pi} cos^{2n} x,dx$ be useful if you can switch integration and summation?
$endgroup$
– Zachary
Jan 24 at 1:47
$begingroup$
Would the fact that $frac{{2nchoose n}}{4^n}=frac{1}{2pi}int_0^{2pi} cos^{2n} x,dx$ be useful if you can switch integration and summation?
$endgroup$
– Zachary
Jan 24 at 1:47
$begingroup$
Looks like a very good idea, but as far as I know there is no known closed form for the power series $sumlimits_{n=1}^{infty}frac{H_{2n}}{n^2}x^{2n}$... And even if there were, I guess we would eventually get a very nasty looking integral, especially after composing with the cosine function...
$endgroup$
– Harmonic Sun
Jan 24 at 2:32
$begingroup$
Looks like a very good idea, but as far as I know there is no known closed form for the power series $sumlimits_{n=1}^{infty}frac{H_{2n}}{n^2}x^{2n}$... And even if there were, I guess we would eventually get a very nasty looking integral, especially after composing with the cosine function...
$endgroup$
– Harmonic Sun
Jan 24 at 2:32
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For $x in [0,1]$ let
$$ f(x) = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} x^{2n} , . $$
Using the power series of $arcsin$ we find
$$ x frac{mathrm{d}}{mathrm{d} x} x frac{mathrm{d}}{mathrm{d} x} f(x) = 4 frac{mathrm{d}}{mathrm{d} x} [arcsin(x) - x] = 4 left[frac{1}{sqrt{1-x^2}} - 1 right] $$
for $x in [0,1)$ . In particular,
$$ f'(1) = 4 int limits_0^1 frac{1}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x stackrel{x=sqrt{1-y^2}}{=} 4 int limits_0^1 frac{mathrm{d} y}{1+y} = 4 ln(2) , . $$
Now we can compute
begin{align}
S &equiv sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} int limits_0^1 frac{1-x^{2n}}{1-x} , mathrm{d} x = int limits_0^1 frac{f(1) - f(x)}{1-x} , mathrm{d} x \
&= int limits_0^1 frac{- ln(1-x)}{x} x f'(x) , mathrm{d} x
= operatorname{Li}_2 (1) f'(1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x \
&= operatorname{Li}_2 (1) f'(1) + 4 operatorname{Li}_3 (1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x sqrt{1-x^2}} , mathrm{d} x equiv 4 left[frac{pi^2}{6} ln(2) + zeta(3) - Iright] , .
end{align}
In order to find $I$ we use a well-known integral representation of the dilogarithm:
begin{align}
I &= int limits_0^infty t int limits_0^1 frac{mathrm{d} x}{(mathrm{e}^t - x) sqrt{1-x^2}} , mathrm{d} t stackrel{(*)}{=} int limits_0^infty frac{t left[frac{pi}{2} + arcsin(mathrm{e}^{-t})right]}{sqrt{mathrm{e}^{2t}-1}} , mathrm{d} t \
&stackrel{mathrm{e}^{-t} = sin(u)}{=} frac{1}{2} int limits_0^{pi/2} -ln[sin(u)] (pi + 2 u) , mathrm{d} u = frac{1}{2} int limits_0^{pi/2} u (pi + u) cot(u) , mathrm{d} u \
&= frac{1}{2} [pi K_1^{(1)} + K_2^{(1)}] = frac{3}{8}pi^2 ln(2) - frac{7}{16} zeta(3) , .
end{align}
The integrals $ K_n^{(m)}$ are discussed in this question. Combining this result and the previous expression for the sum we end up with
$$ boxed{S = sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = frac{23}{4} zeta(3) - frac{5}{6} pi^2 ln(2)} , . $$
Proof of $(*)$:
For $a in [0,1]$ let
$$ g(a) = int limits_0^1 frac{-ln(1-a x)}{x sqrt{1-x^2}} , mathrm{d} x= sum limits_{n=1}^infty frac{a^n}{n} int limits_0^{pi/2} sin^{n-1} (t) , mathrm{d} t , .$$
Using Wallis' integrals we find
$$ g(a) = frac{pi}{2} sum limits_{k=0}^infty frac{{2k choose k} a^{2k+1}}{4^k(2k+1)} + frac{1}{4} sum limits_{m=1}^infty frac{4^k a^{2k}}{k^2 {2k choose k}} = frac{pi}{2} arcsin(a) + frac{1}{2} arcsin^2 (a) , . $$
Therefore
$$ int limits_0^1 frac{mathrm{d} x}{(1-a x)sqrt{1-x^2}} = g'(a) = frac{frac{pi}{2} + arcsin{a}}{sqrt{1-a^2}} $$
holds for $a in [0,1)$ .
$endgroup$
1
$begingroup$
This is a nice answer. Now, when I look at my junk, I am just ashamed.
$endgroup$
– Claude Leibovici
Jan 24 at 5:44
1
$begingroup$
Yes indeed, this is a very nice answer.
$endgroup$
– omegadot
Jan 24 at 5:46
$begingroup$
Thank you very much, this is a great answer !
$endgroup$
– Harmonic Sun
Jan 24 at 15:03
add a comment |
$begingroup$
This is not an answer but it is too long for a comment.
Considering
$$a_n=frac{H_{2n}}{n^2,4^n}{2n choose n}qquad text{and} qquad S_p=sum_{n=1}^p a_n$$ none of the CAS I tried was able to find an expression for the partial sums or the infinite sum. Numerically, as shown below, the convergence looks to be extremely slow
$$left(
begin{array}{cc}
p & S_p \
1000 & 1.21081501745 \
2000 & 1.21088004598 \
3000 & 1.21089738494 \
4000 & 1.21090493158 \
5000 & 1.21090901996 \
6000 & 1.21091153294 \
7000 & 1.21091321066 \
8000 & 1.21091439815 \
9000 & 1.21091527609 \
10000 & 1.21091594745
end{array}
right)$$ which can be explained by the fact that, for large values of $n$
$$frac {a_{n+1}} {a_n} simeq 1+frac{2-5( log (2n)+ gamma) }{2 n left(log(2n)+gamma right)}$$ For the infinite summation, the result seems to be close to $1.2109201$ which is not identified by inverse symbolic calculators.
For large values of $n$, we also can find
$$a_nsimeq b_n=frac{ log (2n)+gamma }{n^{5/2},sqrt{pi }}$$ which does not help much even if
$$sum_{n=1}^infty b_n=frac{(gamma+log(2)) zeta left(frac{5}{2}right)-zeta 'left(frac{5}{2}right)}{sqrt{pi }}approx 1.18001$$
However, numerically, this can be of some help writing
$$S_infty=S_p+sum_{n=p+1}^infty b_n$$
$$left(
begin{array}{cc}
p & S_infty approx \
100 & 1.2109213325 \
200 & 1.2109203863 \
300 & 1.2109202368 \
400 & 1.2109201900 \
500 & 1.2109201700 \
600 & 1.2109201590 \
700 & 1.2109201535 \
800 & 1.2109201498 \
900 & 1.2109201475 \
1000 & 1.2109201458
end{array}
right)$$
$endgroup$
$begingroup$
First five terms summed of a partial closed form sum approximation achieved using Mathematica 11.3. After term 9 the $log[2]$ term disappears and then appears occasionally after that, not sure if this is an error or feature of this partial series. $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^1 text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n 2^{2 n}}right] , dxright]=frac{11 left(515328 pi ^2-859301-6183936 log ^2(2)right)}{11612160}$$
$endgroup$
– James Arathoon
Jan 24 at 12:39
$begingroup$
or for slightly simpler integral $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^{frac{1}{2}} text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n}right] , dxright] $$
$endgroup$
– James Arathoon
Jan 24 at 13:20
$begingroup$
First comment should read after partial term 10
$endgroup$
– James Arathoon
Jan 24 at 13:27
$begingroup$
@JamesArathoon. Very interesting and I thank you. Would you mind to send me the input form MMA syntax in a .txt file . I should try to play with it when going to university (my e-mail address is my profile). Thanks again :-)
$endgroup$
– Claude Leibovici
Jan 24 at 16:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085293%2fclosed-form-expression-for-the-harmonic-sum-sum-limits-n-1-infty-frach%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $x in [0,1]$ let
$$ f(x) = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} x^{2n} , . $$
Using the power series of $arcsin$ we find
$$ x frac{mathrm{d}}{mathrm{d} x} x frac{mathrm{d}}{mathrm{d} x} f(x) = 4 frac{mathrm{d}}{mathrm{d} x} [arcsin(x) - x] = 4 left[frac{1}{sqrt{1-x^2}} - 1 right] $$
for $x in [0,1)$ . In particular,
$$ f'(1) = 4 int limits_0^1 frac{1}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x stackrel{x=sqrt{1-y^2}}{=} 4 int limits_0^1 frac{mathrm{d} y}{1+y} = 4 ln(2) , . $$
Now we can compute
begin{align}
S &equiv sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} int limits_0^1 frac{1-x^{2n}}{1-x} , mathrm{d} x = int limits_0^1 frac{f(1) - f(x)}{1-x} , mathrm{d} x \
&= int limits_0^1 frac{- ln(1-x)}{x} x f'(x) , mathrm{d} x
= operatorname{Li}_2 (1) f'(1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x \
&= operatorname{Li}_2 (1) f'(1) + 4 operatorname{Li}_3 (1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x sqrt{1-x^2}} , mathrm{d} x equiv 4 left[frac{pi^2}{6} ln(2) + zeta(3) - Iright] , .
end{align}
In order to find $I$ we use a well-known integral representation of the dilogarithm:
begin{align}
I &= int limits_0^infty t int limits_0^1 frac{mathrm{d} x}{(mathrm{e}^t - x) sqrt{1-x^2}} , mathrm{d} t stackrel{(*)}{=} int limits_0^infty frac{t left[frac{pi}{2} + arcsin(mathrm{e}^{-t})right]}{sqrt{mathrm{e}^{2t}-1}} , mathrm{d} t \
&stackrel{mathrm{e}^{-t} = sin(u)}{=} frac{1}{2} int limits_0^{pi/2} -ln[sin(u)] (pi + 2 u) , mathrm{d} u = frac{1}{2} int limits_0^{pi/2} u (pi + u) cot(u) , mathrm{d} u \
&= frac{1}{2} [pi K_1^{(1)} + K_2^{(1)}] = frac{3}{8}pi^2 ln(2) - frac{7}{16} zeta(3) , .
end{align}
The integrals $ K_n^{(m)}$ are discussed in this question. Combining this result and the previous expression for the sum we end up with
$$ boxed{S = sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = frac{23}{4} zeta(3) - frac{5}{6} pi^2 ln(2)} , . $$
Proof of $(*)$:
For $a in [0,1]$ let
$$ g(a) = int limits_0^1 frac{-ln(1-a x)}{x sqrt{1-x^2}} , mathrm{d} x= sum limits_{n=1}^infty frac{a^n}{n} int limits_0^{pi/2} sin^{n-1} (t) , mathrm{d} t , .$$
Using Wallis' integrals we find
$$ g(a) = frac{pi}{2} sum limits_{k=0}^infty frac{{2k choose k} a^{2k+1}}{4^k(2k+1)} + frac{1}{4} sum limits_{m=1}^infty frac{4^k a^{2k}}{k^2 {2k choose k}} = frac{pi}{2} arcsin(a) + frac{1}{2} arcsin^2 (a) , . $$
Therefore
$$ int limits_0^1 frac{mathrm{d} x}{(1-a x)sqrt{1-x^2}} = g'(a) = frac{frac{pi}{2} + arcsin{a}}{sqrt{1-a^2}} $$
holds for $a in [0,1)$ .
$endgroup$
1
$begingroup$
This is a nice answer. Now, when I look at my junk, I am just ashamed.
$endgroup$
– Claude Leibovici
Jan 24 at 5:44
1
$begingroup$
Yes indeed, this is a very nice answer.
$endgroup$
– omegadot
Jan 24 at 5:46
$begingroup$
Thank you very much, this is a great answer !
$endgroup$
– Harmonic Sun
Jan 24 at 15:03
add a comment |
$begingroup$
For $x in [0,1]$ let
$$ f(x) = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} x^{2n} , . $$
Using the power series of $arcsin$ we find
$$ x frac{mathrm{d}}{mathrm{d} x} x frac{mathrm{d}}{mathrm{d} x} f(x) = 4 frac{mathrm{d}}{mathrm{d} x} [arcsin(x) - x] = 4 left[frac{1}{sqrt{1-x^2}} - 1 right] $$
for $x in [0,1)$ . In particular,
$$ f'(1) = 4 int limits_0^1 frac{1}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x stackrel{x=sqrt{1-y^2}}{=} 4 int limits_0^1 frac{mathrm{d} y}{1+y} = 4 ln(2) , . $$
Now we can compute
begin{align}
S &equiv sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} int limits_0^1 frac{1-x^{2n}}{1-x} , mathrm{d} x = int limits_0^1 frac{f(1) - f(x)}{1-x} , mathrm{d} x \
&= int limits_0^1 frac{- ln(1-x)}{x} x f'(x) , mathrm{d} x
= operatorname{Li}_2 (1) f'(1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x \
&= operatorname{Li}_2 (1) f'(1) + 4 operatorname{Li}_3 (1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x sqrt{1-x^2}} , mathrm{d} x equiv 4 left[frac{pi^2}{6} ln(2) + zeta(3) - Iright] , .
end{align}
In order to find $I$ we use a well-known integral representation of the dilogarithm:
begin{align}
I &= int limits_0^infty t int limits_0^1 frac{mathrm{d} x}{(mathrm{e}^t - x) sqrt{1-x^2}} , mathrm{d} t stackrel{(*)}{=} int limits_0^infty frac{t left[frac{pi}{2} + arcsin(mathrm{e}^{-t})right]}{sqrt{mathrm{e}^{2t}-1}} , mathrm{d} t \
&stackrel{mathrm{e}^{-t} = sin(u)}{=} frac{1}{2} int limits_0^{pi/2} -ln[sin(u)] (pi + 2 u) , mathrm{d} u = frac{1}{2} int limits_0^{pi/2} u (pi + u) cot(u) , mathrm{d} u \
&= frac{1}{2} [pi K_1^{(1)} + K_2^{(1)}] = frac{3}{8}pi^2 ln(2) - frac{7}{16} zeta(3) , .
end{align}
The integrals $ K_n^{(m)}$ are discussed in this question. Combining this result and the previous expression for the sum we end up with
$$ boxed{S = sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = frac{23}{4} zeta(3) - frac{5}{6} pi^2 ln(2)} , . $$
Proof of $(*)$:
For $a in [0,1]$ let
$$ g(a) = int limits_0^1 frac{-ln(1-a x)}{x sqrt{1-x^2}} , mathrm{d} x= sum limits_{n=1}^infty frac{a^n}{n} int limits_0^{pi/2} sin^{n-1} (t) , mathrm{d} t , .$$
Using Wallis' integrals we find
$$ g(a) = frac{pi}{2} sum limits_{k=0}^infty frac{{2k choose k} a^{2k+1}}{4^k(2k+1)} + frac{1}{4} sum limits_{m=1}^infty frac{4^k a^{2k}}{k^2 {2k choose k}} = frac{pi}{2} arcsin(a) + frac{1}{2} arcsin^2 (a) , . $$
Therefore
$$ int limits_0^1 frac{mathrm{d} x}{(1-a x)sqrt{1-x^2}} = g'(a) = frac{frac{pi}{2} + arcsin{a}}{sqrt{1-a^2}} $$
holds for $a in [0,1)$ .
$endgroup$
1
$begingroup$
This is a nice answer. Now, when I look at my junk, I am just ashamed.
$endgroup$
– Claude Leibovici
Jan 24 at 5:44
1
$begingroup$
Yes indeed, this is a very nice answer.
$endgroup$
– omegadot
Jan 24 at 5:46
$begingroup$
Thank you very much, this is a great answer !
$endgroup$
– Harmonic Sun
Jan 24 at 15:03
add a comment |
$begingroup$
For $x in [0,1]$ let
$$ f(x) = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} x^{2n} , . $$
Using the power series of $arcsin$ we find
$$ x frac{mathrm{d}}{mathrm{d} x} x frac{mathrm{d}}{mathrm{d} x} f(x) = 4 frac{mathrm{d}}{mathrm{d} x} [arcsin(x) - x] = 4 left[frac{1}{sqrt{1-x^2}} - 1 right] $$
for $x in [0,1)$ . In particular,
$$ f'(1) = 4 int limits_0^1 frac{1}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x stackrel{x=sqrt{1-y^2}}{=} 4 int limits_0^1 frac{mathrm{d} y}{1+y} = 4 ln(2) , . $$
Now we can compute
begin{align}
S &equiv sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} int limits_0^1 frac{1-x^{2n}}{1-x} , mathrm{d} x = int limits_0^1 frac{f(1) - f(x)}{1-x} , mathrm{d} x \
&= int limits_0^1 frac{- ln(1-x)}{x} x f'(x) , mathrm{d} x
= operatorname{Li}_2 (1) f'(1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x \
&= operatorname{Li}_2 (1) f'(1) + 4 operatorname{Li}_3 (1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x sqrt{1-x^2}} , mathrm{d} x equiv 4 left[frac{pi^2}{6} ln(2) + zeta(3) - Iright] , .
end{align}
In order to find $I$ we use a well-known integral representation of the dilogarithm:
begin{align}
I &= int limits_0^infty t int limits_0^1 frac{mathrm{d} x}{(mathrm{e}^t - x) sqrt{1-x^2}} , mathrm{d} t stackrel{(*)}{=} int limits_0^infty frac{t left[frac{pi}{2} + arcsin(mathrm{e}^{-t})right]}{sqrt{mathrm{e}^{2t}-1}} , mathrm{d} t \
&stackrel{mathrm{e}^{-t} = sin(u)}{=} frac{1}{2} int limits_0^{pi/2} -ln[sin(u)] (pi + 2 u) , mathrm{d} u = frac{1}{2} int limits_0^{pi/2} u (pi + u) cot(u) , mathrm{d} u \
&= frac{1}{2} [pi K_1^{(1)} + K_2^{(1)}] = frac{3}{8}pi^2 ln(2) - frac{7}{16} zeta(3) , .
end{align}
The integrals $ K_n^{(m)}$ are discussed in this question. Combining this result and the previous expression for the sum we end up with
$$ boxed{S = sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = frac{23}{4} zeta(3) - frac{5}{6} pi^2 ln(2)} , . $$
Proof of $(*)$:
For $a in [0,1]$ let
$$ g(a) = int limits_0^1 frac{-ln(1-a x)}{x sqrt{1-x^2}} , mathrm{d} x= sum limits_{n=1}^infty frac{a^n}{n} int limits_0^{pi/2} sin^{n-1} (t) , mathrm{d} t , .$$
Using Wallis' integrals we find
$$ g(a) = frac{pi}{2} sum limits_{k=0}^infty frac{{2k choose k} a^{2k+1}}{4^k(2k+1)} + frac{1}{4} sum limits_{m=1}^infty frac{4^k a^{2k}}{k^2 {2k choose k}} = frac{pi}{2} arcsin(a) + frac{1}{2} arcsin^2 (a) , . $$
Therefore
$$ int limits_0^1 frac{mathrm{d} x}{(1-a x)sqrt{1-x^2}} = g'(a) = frac{frac{pi}{2} + arcsin{a}}{sqrt{1-a^2}} $$
holds for $a in [0,1)$ .
$endgroup$
For $x in [0,1]$ let
$$ f(x) = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} x^{2n} , . $$
Using the power series of $arcsin$ we find
$$ x frac{mathrm{d}}{mathrm{d} x} x frac{mathrm{d}}{mathrm{d} x} f(x) = 4 frac{mathrm{d}}{mathrm{d} x} [arcsin(x) - x] = 4 left[frac{1}{sqrt{1-x^2}} - 1 right] $$
for $x in [0,1)$ . In particular,
$$ f'(1) = 4 int limits_0^1 frac{1}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x stackrel{x=sqrt{1-y^2}}{=} 4 int limits_0^1 frac{mathrm{d} y}{1+y} = 4 ln(2) , . $$
Now we can compute
begin{align}
S &equiv sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = sum limits_{n=1}^infty frac{{2n choose n}}{n^2 4^n} int limits_0^1 frac{1-x^{2n}}{1-x} , mathrm{d} x = int limits_0^1 frac{f(1) - f(x)}{1-x} , mathrm{d} x \
&= int limits_0^1 frac{- ln(1-x)}{x} x f'(x) , mathrm{d} x
= operatorname{Li}_2 (1) f'(1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x} left[frac{1}{sqrt{1-x^2}} - 1 right] , mathrm{d} x \
&= operatorname{Li}_2 (1) f'(1) + 4 operatorname{Li}_3 (1) - 4 int limits_0^1 frac{operatorname{Li}_2 (x)}{x sqrt{1-x^2}} , mathrm{d} x equiv 4 left[frac{pi^2}{6} ln(2) + zeta(3) - Iright] , .
end{align}
In order to find $I$ we use a well-known integral representation of the dilogarithm:
begin{align}
I &= int limits_0^infty t int limits_0^1 frac{mathrm{d} x}{(mathrm{e}^t - x) sqrt{1-x^2}} , mathrm{d} t stackrel{(*)}{=} int limits_0^infty frac{t left[frac{pi}{2} + arcsin(mathrm{e}^{-t})right]}{sqrt{mathrm{e}^{2t}-1}} , mathrm{d} t \
&stackrel{mathrm{e}^{-t} = sin(u)}{=} frac{1}{2} int limits_0^{pi/2} -ln[sin(u)] (pi + 2 u) , mathrm{d} u = frac{1}{2} int limits_0^{pi/2} u (pi + u) cot(u) , mathrm{d} u \
&= frac{1}{2} [pi K_1^{(1)} + K_2^{(1)}] = frac{3}{8}pi^2 ln(2) - frac{7}{16} zeta(3) , .
end{align}
The integrals $ K_n^{(m)}$ are discussed in this question. Combining this result and the previous expression for the sum we end up with
$$ boxed{S = sum limits_{n=1}^infty frac{H_{2n} {2n choose n}}{n^2 4^n} = frac{23}{4} zeta(3) - frac{5}{6} pi^2 ln(2)} , . $$
Proof of $(*)$:
For $a in [0,1]$ let
$$ g(a) = int limits_0^1 frac{-ln(1-a x)}{x sqrt{1-x^2}} , mathrm{d} x= sum limits_{n=1}^infty frac{a^n}{n} int limits_0^{pi/2} sin^{n-1} (t) , mathrm{d} t , .$$
Using Wallis' integrals we find
$$ g(a) = frac{pi}{2} sum limits_{k=0}^infty frac{{2k choose k} a^{2k+1}}{4^k(2k+1)} + frac{1}{4} sum limits_{m=1}^infty frac{4^k a^{2k}}{k^2 {2k choose k}} = frac{pi}{2} arcsin(a) + frac{1}{2} arcsin^2 (a) , . $$
Therefore
$$ int limits_0^1 frac{mathrm{d} x}{(1-a x)sqrt{1-x^2}} = g'(a) = frac{frac{pi}{2} + arcsin{a}}{sqrt{1-a^2}} $$
holds for $a in [0,1)$ .
edited Jan 24 at 6:00
answered Jan 24 at 4:48
ComplexYetTrivialComplexYetTrivial
4,8332631
4,8332631
1
$begingroup$
This is a nice answer. Now, when I look at my junk, I am just ashamed.
$endgroup$
– Claude Leibovici
Jan 24 at 5:44
1
$begingroup$
Yes indeed, this is a very nice answer.
$endgroup$
– omegadot
Jan 24 at 5:46
$begingroup$
Thank you very much, this is a great answer !
$endgroup$
– Harmonic Sun
Jan 24 at 15:03
add a comment |
1
$begingroup$
This is a nice answer. Now, when I look at my junk, I am just ashamed.
$endgroup$
– Claude Leibovici
Jan 24 at 5:44
1
$begingroup$
Yes indeed, this is a very nice answer.
$endgroup$
– omegadot
Jan 24 at 5:46
$begingroup$
Thank you very much, this is a great answer !
$endgroup$
– Harmonic Sun
Jan 24 at 15:03
1
1
$begingroup$
This is a nice answer. Now, when I look at my junk, I am just ashamed.
$endgroup$
– Claude Leibovici
Jan 24 at 5:44
$begingroup$
This is a nice answer. Now, when I look at my junk, I am just ashamed.
$endgroup$
– Claude Leibovici
Jan 24 at 5:44
1
1
$begingroup$
Yes indeed, this is a very nice answer.
$endgroup$
– omegadot
Jan 24 at 5:46
$begingroup$
Yes indeed, this is a very nice answer.
$endgroup$
– omegadot
Jan 24 at 5:46
$begingroup$
Thank you very much, this is a great answer !
$endgroup$
– Harmonic Sun
Jan 24 at 15:03
$begingroup$
Thank you very much, this is a great answer !
$endgroup$
– Harmonic Sun
Jan 24 at 15:03
add a comment |
$begingroup$
This is not an answer but it is too long for a comment.
Considering
$$a_n=frac{H_{2n}}{n^2,4^n}{2n choose n}qquad text{and} qquad S_p=sum_{n=1}^p a_n$$ none of the CAS I tried was able to find an expression for the partial sums or the infinite sum. Numerically, as shown below, the convergence looks to be extremely slow
$$left(
begin{array}{cc}
p & S_p \
1000 & 1.21081501745 \
2000 & 1.21088004598 \
3000 & 1.21089738494 \
4000 & 1.21090493158 \
5000 & 1.21090901996 \
6000 & 1.21091153294 \
7000 & 1.21091321066 \
8000 & 1.21091439815 \
9000 & 1.21091527609 \
10000 & 1.21091594745
end{array}
right)$$ which can be explained by the fact that, for large values of $n$
$$frac {a_{n+1}} {a_n} simeq 1+frac{2-5( log (2n)+ gamma) }{2 n left(log(2n)+gamma right)}$$ For the infinite summation, the result seems to be close to $1.2109201$ which is not identified by inverse symbolic calculators.
For large values of $n$, we also can find
$$a_nsimeq b_n=frac{ log (2n)+gamma }{n^{5/2},sqrt{pi }}$$ which does not help much even if
$$sum_{n=1}^infty b_n=frac{(gamma+log(2)) zeta left(frac{5}{2}right)-zeta 'left(frac{5}{2}right)}{sqrt{pi }}approx 1.18001$$
However, numerically, this can be of some help writing
$$S_infty=S_p+sum_{n=p+1}^infty b_n$$
$$left(
begin{array}{cc}
p & S_infty approx \
100 & 1.2109213325 \
200 & 1.2109203863 \
300 & 1.2109202368 \
400 & 1.2109201900 \
500 & 1.2109201700 \
600 & 1.2109201590 \
700 & 1.2109201535 \
800 & 1.2109201498 \
900 & 1.2109201475 \
1000 & 1.2109201458
end{array}
right)$$
$endgroup$
$begingroup$
First five terms summed of a partial closed form sum approximation achieved using Mathematica 11.3. After term 9 the $log[2]$ term disappears and then appears occasionally after that, not sure if this is an error or feature of this partial series. $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^1 text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n 2^{2 n}}right] , dxright]=frac{11 left(515328 pi ^2-859301-6183936 log ^2(2)right)}{11612160}$$
$endgroup$
– James Arathoon
Jan 24 at 12:39
$begingroup$
or for slightly simpler integral $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^{frac{1}{2}} text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n}right] , dxright] $$
$endgroup$
– James Arathoon
Jan 24 at 13:20
$begingroup$
First comment should read after partial term 10
$endgroup$
– James Arathoon
Jan 24 at 13:27
$begingroup$
@JamesArathoon. Very interesting and I thank you. Would you mind to send me the input form MMA syntax in a .txt file . I should try to play with it when going to university (my e-mail address is my profile). Thanks again :-)
$endgroup$
– Claude Leibovici
Jan 24 at 16:00
add a comment |
$begingroup$
This is not an answer but it is too long for a comment.
Considering
$$a_n=frac{H_{2n}}{n^2,4^n}{2n choose n}qquad text{and} qquad S_p=sum_{n=1}^p a_n$$ none of the CAS I tried was able to find an expression for the partial sums or the infinite sum. Numerically, as shown below, the convergence looks to be extremely slow
$$left(
begin{array}{cc}
p & S_p \
1000 & 1.21081501745 \
2000 & 1.21088004598 \
3000 & 1.21089738494 \
4000 & 1.21090493158 \
5000 & 1.21090901996 \
6000 & 1.21091153294 \
7000 & 1.21091321066 \
8000 & 1.21091439815 \
9000 & 1.21091527609 \
10000 & 1.21091594745
end{array}
right)$$ which can be explained by the fact that, for large values of $n$
$$frac {a_{n+1}} {a_n} simeq 1+frac{2-5( log (2n)+ gamma) }{2 n left(log(2n)+gamma right)}$$ For the infinite summation, the result seems to be close to $1.2109201$ which is not identified by inverse symbolic calculators.
For large values of $n$, we also can find
$$a_nsimeq b_n=frac{ log (2n)+gamma }{n^{5/2},sqrt{pi }}$$ which does not help much even if
$$sum_{n=1}^infty b_n=frac{(gamma+log(2)) zeta left(frac{5}{2}right)-zeta 'left(frac{5}{2}right)}{sqrt{pi }}approx 1.18001$$
However, numerically, this can be of some help writing
$$S_infty=S_p+sum_{n=p+1}^infty b_n$$
$$left(
begin{array}{cc}
p & S_infty approx \
100 & 1.2109213325 \
200 & 1.2109203863 \
300 & 1.2109202368 \
400 & 1.2109201900 \
500 & 1.2109201700 \
600 & 1.2109201590 \
700 & 1.2109201535 \
800 & 1.2109201498 \
900 & 1.2109201475 \
1000 & 1.2109201458
end{array}
right)$$
$endgroup$
$begingroup$
First five terms summed of a partial closed form sum approximation achieved using Mathematica 11.3. After term 9 the $log[2]$ term disappears and then appears occasionally after that, not sure if this is an error or feature of this partial series. $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^1 text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n 2^{2 n}}right] , dxright]=frac{11 left(515328 pi ^2-859301-6183936 log ^2(2)right)}{11612160}$$
$endgroup$
– James Arathoon
Jan 24 at 12:39
$begingroup$
or for slightly simpler integral $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^{frac{1}{2}} text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n}right] , dxright] $$
$endgroup$
– James Arathoon
Jan 24 at 13:20
$begingroup$
First comment should read after partial term 10
$endgroup$
– James Arathoon
Jan 24 at 13:27
$begingroup$
@JamesArathoon. Very interesting and I thank you. Would you mind to send me the input form MMA syntax in a .txt file . I should try to play with it when going to university (my e-mail address is my profile). Thanks again :-)
$endgroup$
– Claude Leibovici
Jan 24 at 16:00
add a comment |
$begingroup$
This is not an answer but it is too long for a comment.
Considering
$$a_n=frac{H_{2n}}{n^2,4^n}{2n choose n}qquad text{and} qquad S_p=sum_{n=1}^p a_n$$ none of the CAS I tried was able to find an expression for the partial sums or the infinite sum. Numerically, as shown below, the convergence looks to be extremely slow
$$left(
begin{array}{cc}
p & S_p \
1000 & 1.21081501745 \
2000 & 1.21088004598 \
3000 & 1.21089738494 \
4000 & 1.21090493158 \
5000 & 1.21090901996 \
6000 & 1.21091153294 \
7000 & 1.21091321066 \
8000 & 1.21091439815 \
9000 & 1.21091527609 \
10000 & 1.21091594745
end{array}
right)$$ which can be explained by the fact that, for large values of $n$
$$frac {a_{n+1}} {a_n} simeq 1+frac{2-5( log (2n)+ gamma) }{2 n left(log(2n)+gamma right)}$$ For the infinite summation, the result seems to be close to $1.2109201$ which is not identified by inverse symbolic calculators.
For large values of $n$, we also can find
$$a_nsimeq b_n=frac{ log (2n)+gamma }{n^{5/2},sqrt{pi }}$$ which does not help much even if
$$sum_{n=1}^infty b_n=frac{(gamma+log(2)) zeta left(frac{5}{2}right)-zeta 'left(frac{5}{2}right)}{sqrt{pi }}approx 1.18001$$
However, numerically, this can be of some help writing
$$S_infty=S_p+sum_{n=p+1}^infty b_n$$
$$left(
begin{array}{cc}
p & S_infty approx \
100 & 1.2109213325 \
200 & 1.2109203863 \
300 & 1.2109202368 \
400 & 1.2109201900 \
500 & 1.2109201700 \
600 & 1.2109201590 \
700 & 1.2109201535 \
800 & 1.2109201498 \
900 & 1.2109201475 \
1000 & 1.2109201458
end{array}
right)$$
$endgroup$
This is not an answer but it is too long for a comment.
Considering
$$a_n=frac{H_{2n}}{n^2,4^n}{2n choose n}qquad text{and} qquad S_p=sum_{n=1}^p a_n$$ none of the CAS I tried was able to find an expression for the partial sums or the infinite sum. Numerically, as shown below, the convergence looks to be extremely slow
$$left(
begin{array}{cc}
p & S_p \
1000 & 1.21081501745 \
2000 & 1.21088004598 \
3000 & 1.21089738494 \
4000 & 1.21090493158 \
5000 & 1.21090901996 \
6000 & 1.21091153294 \
7000 & 1.21091321066 \
8000 & 1.21091439815 \
9000 & 1.21091527609 \
10000 & 1.21091594745
end{array}
right)$$ which can be explained by the fact that, for large values of $n$
$$frac {a_{n+1}} {a_n} simeq 1+frac{2-5( log (2n)+ gamma) }{2 n left(log(2n)+gamma right)}$$ For the infinite summation, the result seems to be close to $1.2109201$ which is not identified by inverse symbolic calculators.
For large values of $n$, we also can find
$$a_nsimeq b_n=frac{ log (2n)+gamma }{n^{5/2},sqrt{pi }}$$ which does not help much even if
$$sum_{n=1}^infty b_n=frac{(gamma+log(2)) zeta left(frac{5}{2}right)-zeta 'left(frac{5}{2}right)}{sqrt{pi }}approx 1.18001$$
However, numerically, this can be of some help writing
$$S_infty=S_p+sum_{n=p+1}^infty b_n$$
$$left(
begin{array}{cc}
p & S_infty approx \
100 & 1.2109213325 \
200 & 1.2109203863 \
300 & 1.2109202368 \
400 & 1.2109201900 \
500 & 1.2109201700 \
600 & 1.2109201590 \
700 & 1.2109201535 \
800 & 1.2109201498 \
900 & 1.2109201475 \
1000 & 1.2109201458
end{array}
right)$$
answered Jan 24 at 5:40
Claude LeiboviciClaude Leibovici
124k1157135
124k1157135
$begingroup$
First five terms summed of a partial closed form sum approximation achieved using Mathematica 11.3. After term 9 the $log[2]$ term disappears and then appears occasionally after that, not sure if this is an error or feature of this partial series. $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^1 text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n 2^{2 n}}right] , dxright]=frac{11 left(515328 pi ^2-859301-6183936 log ^2(2)right)}{11612160}$$
$endgroup$
– James Arathoon
Jan 24 at 12:39
$begingroup$
or for slightly simpler integral $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^{frac{1}{2}} text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n}right] , dxright] $$
$endgroup$
– James Arathoon
Jan 24 at 13:20
$begingroup$
First comment should read after partial term 10
$endgroup$
– James Arathoon
Jan 24 at 13:27
$begingroup$
@JamesArathoon. Very interesting and I thank you. Would you mind to send me the input form MMA syntax in a .txt file . I should try to play with it when going to university (my e-mail address is my profile). Thanks again :-)
$endgroup$
– Claude Leibovici
Jan 24 at 16:00
add a comment |
$begingroup$
First five terms summed of a partial closed form sum approximation achieved using Mathematica 11.3. After term 9 the $log[2]$ term disappears and then appears occasionally after that, not sure if this is an error or feature of this partial series. $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^1 text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n 2^{2 n}}right] , dxright]=frac{11 left(515328 pi ^2-859301-6183936 log ^2(2)right)}{11612160}$$
$endgroup$
– James Arathoon
Jan 24 at 12:39
$begingroup$
or for slightly simpler integral $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^{frac{1}{2}} text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n}right] , dxright] $$
$endgroup$
– James Arathoon
Jan 24 at 13:20
$begingroup$
First comment should read after partial term 10
$endgroup$
– James Arathoon
Jan 24 at 13:27
$begingroup$
@JamesArathoon. Very interesting and I thank you. Would you mind to send me the input form MMA syntax in a .txt file . I should try to play with it when going to university (my e-mail address is my profile). Thanks again :-)
$endgroup$
– Claude Leibovici
Jan 24 at 16:00
$begingroup$
First five terms summed of a partial closed form sum approximation achieved using Mathematica 11.3. After term 9 the $log[2]$ term disappears and then appears occasionally after that, not sure if this is an error or feature of this partial series. $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^1 text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n 2^{2 n}}right] , dxright]=frac{11 left(515328 pi ^2-859301-6183936 log ^2(2)right)}{11612160}$$
$endgroup$
– James Arathoon
Jan 24 at 12:39
$begingroup$
First five terms summed of a partial closed form sum approximation achieved using Mathematica 11.3. After term 9 the $log[2]$ term disappears and then appears occasionally after that, not sure if this is an error or feature of this partial series. $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^1 text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n 2^{2 n}}right] , dxright]=frac{11 left(515328 pi ^2-859301-6183936 log ^2(2)right)}{11612160}$$
$endgroup$
– James Arathoon
Jan 24 at 12:39
$begingroup$
or for slightly simpler integral $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^{frac{1}{2}} text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n}right] , dxright] $$
$endgroup$
– James Arathoon
Jan 24 at 13:20
$begingroup$
or for slightly simpler integral $$text{FullSimplify}left[2 sum _{m=1}^5 left(H_{2 m}-H_{2 m-2}right) int_0^{frac{1}{2}} text{FullSimplify}left[sum _{n=m}^{infty } frac{binom{2 n}{n} x^{2 n-1}}{n}right] , dxright] $$
$endgroup$
– James Arathoon
Jan 24 at 13:20
$begingroup$
First comment should read after partial term 10
$endgroup$
– James Arathoon
Jan 24 at 13:27
$begingroup$
First comment should read after partial term 10
$endgroup$
– James Arathoon
Jan 24 at 13:27
$begingroup$
@JamesArathoon. Very interesting and I thank you. Would you mind to send me the input form MMA syntax in a .txt file . I should try to play with it when going to university (my e-mail address is my profile). Thanks again :-)
$endgroup$
– Claude Leibovici
Jan 24 at 16:00
$begingroup$
@JamesArathoon. Very interesting and I thank you. Would you mind to send me the input form MMA syntax in a .txt file . I should try to play with it when going to university (my e-mail address is my profile). Thanks again :-)
$endgroup$
– Claude Leibovici
Jan 24 at 16:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085293%2fclosed-form-expression-for-the-harmonic-sum-sum-limits-n-1-infty-frach%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Don't you mean $H_n=sum_{k=1}^{n}frac{1}{k}$?
$endgroup$
– James Arathoon
Jan 24 at 1:13
$begingroup$
Oh yes sorry, now it's corrected !
$endgroup$
– Harmonic Sun
Jan 24 at 1:14
$begingroup$
Would the fact that $frac{{2nchoose n}}{4^n}=frac{1}{2pi}int_0^{2pi} cos^{2n} x,dx$ be useful if you can switch integration and summation?
$endgroup$
– Zachary
Jan 24 at 1:47
$begingroup$
Looks like a very good idea, but as far as I know there is no known closed form for the power series $sumlimits_{n=1}^{infty}frac{H_{2n}}{n^2}x^{2n}$... And even if there were, I guess we would eventually get a very nasty looking integral, especially after composing with the cosine function...
$endgroup$
– Harmonic Sun
Jan 24 at 2:32