If one number is thrice the other and their sum is $16$, find the numbers
$begingroup$
If one number is thrice the other and their sum is $16$, find the numbers.
I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question
$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
If one number is thrice the other and their sum is $16$, find the numbers.
I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question
$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$
algebra-precalculus
$endgroup$
$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01
$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01
add a comment |
$begingroup$
If one number is thrice the other and their sum is $16$, find the numbers.
I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question
$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$
algebra-precalculus
$endgroup$
If one number is thrice the other and their sum is $16$, find the numbers.
I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question
$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$
algebra-precalculus
algebra-precalculus
edited Jul 27 '14 at 20:49
user147263
asked Jul 27 '14 at 19:57
AbhishekstudentAbhishekstudent
61821231
61821231
$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01
$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01
add a comment |
$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01
$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01
$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01
$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01
$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01
$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
The problem statement says
$$x+3x=16,$$
hence
$$x=4,\3x=12.$$
$endgroup$
add a comment |
$begingroup$
I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...
$endgroup$
add a comment |
$begingroup$
$$x=3y$$
$$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$
So, $x=12$.
$endgroup$
add a comment |
$begingroup$
Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.
$endgroup$
add a comment |
$begingroup$
Let the first number be $x$.
Let the second number be $y$.
According to question
$$ tag{1}
x+y=16
$$
$$
tag{2}
x=3y
$$
So, $x-3y=0 tag{2}$
Multiply equation $(1)$ by $3$.
Solve both equations:
$$tag{1} 3x+3y=48$$
$$tag{2} x-3y=0$$
$$tag{1) + (2}4x=48$$
$$tag{3}x=12$$
Putting in equation $(1)$:
$$tag{1} x+y=16$$
$$tag{1),(3} 12+y=16$$
$$tag{4}y=16-12$$
$$tag{5}y=4$$
$endgroup$
1
$begingroup$
Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
$endgroup$
– Bill O'Haran
May 3 '18 at 15:57
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f879886%2fif-one-number-is-thrice-the-other-and-their-sum-is-16-find-the-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The problem statement says
$$x+3x=16,$$
hence
$$x=4,\3x=12.$$
$endgroup$
add a comment |
$begingroup$
The problem statement says
$$x+3x=16,$$
hence
$$x=4,\3x=12.$$
$endgroup$
add a comment |
$begingroup$
The problem statement says
$$x+3x=16,$$
hence
$$x=4,\3x=12.$$
$endgroup$
The problem statement says
$$x+3x=16,$$
hence
$$x=4,\3x=12.$$
answered Jul 27 '14 at 20:06
Yves DaoustYves Daoust
130k676229
130k676229
add a comment |
add a comment |
$begingroup$
I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...
$endgroup$
add a comment |
$begingroup$
I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...
$endgroup$
add a comment |
$begingroup$
I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...
$endgroup$
I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...
answered Jul 27 '14 at 20:03
mrsmrs
1
1
add a comment |
add a comment |
$begingroup$
$$x=3y$$
$$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$
So, $x=12$.
$endgroup$
add a comment |
$begingroup$
$$x=3y$$
$$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$
So, $x=12$.
$endgroup$
add a comment |
$begingroup$
$$x=3y$$
$$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$
So, $x=12$.
$endgroup$
$$x=3y$$
$$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$
So, $x=12$.
answered Jul 27 '14 at 20:04
evindaevinda
4,10031854
4,10031854
add a comment |
add a comment |
$begingroup$
Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.
$endgroup$
add a comment |
$begingroup$
Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.
$endgroup$
add a comment |
$begingroup$
Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.
$endgroup$
Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.
edited Jan 24 at 2:36
YiFan
4,7261727
4,7261727
answered Jan 24 at 1:10
user637720user637720
1
1
add a comment |
add a comment |
$begingroup$
Let the first number be $x$.
Let the second number be $y$.
According to question
$$ tag{1}
x+y=16
$$
$$
tag{2}
x=3y
$$
So, $x-3y=0 tag{2}$
Multiply equation $(1)$ by $3$.
Solve both equations:
$$tag{1} 3x+3y=48$$
$$tag{2} x-3y=0$$
$$tag{1) + (2}4x=48$$
$$tag{3}x=12$$
Putting in equation $(1)$:
$$tag{1} x+y=16$$
$$tag{1),(3} 12+y=16$$
$$tag{4}y=16-12$$
$$tag{5}y=4$$
$endgroup$
1
$begingroup$
Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
$endgroup$
– Bill O'Haran
May 3 '18 at 15:57
add a comment |
$begingroup$
Let the first number be $x$.
Let the second number be $y$.
According to question
$$ tag{1}
x+y=16
$$
$$
tag{2}
x=3y
$$
So, $x-3y=0 tag{2}$
Multiply equation $(1)$ by $3$.
Solve both equations:
$$tag{1} 3x+3y=48$$
$$tag{2} x-3y=0$$
$$tag{1) + (2}4x=48$$
$$tag{3}x=12$$
Putting in equation $(1)$:
$$tag{1} x+y=16$$
$$tag{1),(3} 12+y=16$$
$$tag{4}y=16-12$$
$$tag{5}y=4$$
$endgroup$
1
$begingroup$
Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
$endgroup$
– Bill O'Haran
May 3 '18 at 15:57
add a comment |
$begingroup$
Let the first number be $x$.
Let the second number be $y$.
According to question
$$ tag{1}
x+y=16
$$
$$
tag{2}
x=3y
$$
So, $x-3y=0 tag{2}$
Multiply equation $(1)$ by $3$.
Solve both equations:
$$tag{1} 3x+3y=48$$
$$tag{2} x-3y=0$$
$$tag{1) + (2}4x=48$$
$$tag{3}x=12$$
Putting in equation $(1)$:
$$tag{1} x+y=16$$
$$tag{1),(3} 12+y=16$$
$$tag{4}y=16-12$$
$$tag{5}y=4$$
$endgroup$
Let the first number be $x$.
Let the second number be $y$.
According to question
$$ tag{1}
x+y=16
$$
$$
tag{2}
x=3y
$$
So, $x-3y=0 tag{2}$
Multiply equation $(1)$ by $3$.
Solve both equations:
$$tag{1} 3x+3y=48$$
$$tag{2} x-3y=0$$
$$tag{1) + (2}4x=48$$
$$tag{3}x=12$$
Putting in equation $(1)$:
$$tag{1} x+y=16$$
$$tag{1),(3} 12+y=16$$
$$tag{4}y=16-12$$
$$tag{5}y=4$$
edited Jan 24 at 2:47
Adam Hrankowski
2,094930
2,094930
answered May 3 '18 at 15:50
Rachit GuptaRachit Gupta
21
21
1
$begingroup$
Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
$endgroup$
– Bill O'Haran
May 3 '18 at 15:57
add a comment |
1
$begingroup$
Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
$endgroup$
– Bill O'Haran
May 3 '18 at 15:57
1
1
$begingroup$
Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
$endgroup$
– Bill O'Haran
May 3 '18 at 15:57
$begingroup$
Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
$endgroup$
– Bill O'Haran
May 3 '18 at 15:57
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f879886%2fif-one-number-is-thrice-the-other-and-their-sum-is-16-find-the-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01
$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01