Is the formula $A^{-1}=frac{1}{det (A) }text{Adj}(A)$ really true for 2 x 2 matrices?
$begingroup$
Given a 2 x 2 matrix $A=begin{bmatrix} a & b \ c & d end{bmatrix}$, we have the inverse formula $A^{-1}=frac{1}{ad-bc}begin{bmatrix} d & -b \ -c & a end{bmatrix}$.
But isn't $text{Adj}(A)$ equal to $begin{bmatrix} d & -c \ -b & a end{bmatrix}$? So don't we have $frac{1}{det (A)}text{Adj}(A)=frac{1}{ad-bc}begin{bmatrix} d & -c \ -b & a end{bmatrix} ne begin{bmatrix} d & -b \ -c & a end{bmatrix}$?
linear-algebra matrices linear-transformations determinant inverse
$endgroup$
add a comment |
$begingroup$
Given a 2 x 2 matrix $A=begin{bmatrix} a & b \ c & d end{bmatrix}$, we have the inverse formula $A^{-1}=frac{1}{ad-bc}begin{bmatrix} d & -b \ -c & a end{bmatrix}$.
But isn't $text{Adj}(A)$ equal to $begin{bmatrix} d & -c \ -b & a end{bmatrix}$? So don't we have $frac{1}{det (A)}text{Adj}(A)=frac{1}{ad-bc}begin{bmatrix} d & -c \ -b & a end{bmatrix} ne begin{bmatrix} d & -b \ -c & a end{bmatrix}$?
linear-algebra matrices linear-transformations determinant inverse
$endgroup$
3
$begingroup$
$operatorname{Adj}(A)$ is the transpose of what you wrote.
$endgroup$
– anomaly
Jan 24 at 2:13
2
$begingroup$
Huh? No, that's not the adjugate. The cited formula for the inverse is correct.
$endgroup$
– Randall
Jan 24 at 2:13
$begingroup$
Thanks @anomaly, that explains it
$endgroup$
– Rasputin
Jan 24 at 2:15
add a comment |
$begingroup$
Given a 2 x 2 matrix $A=begin{bmatrix} a & b \ c & d end{bmatrix}$, we have the inverse formula $A^{-1}=frac{1}{ad-bc}begin{bmatrix} d & -b \ -c & a end{bmatrix}$.
But isn't $text{Adj}(A)$ equal to $begin{bmatrix} d & -c \ -b & a end{bmatrix}$? So don't we have $frac{1}{det (A)}text{Adj}(A)=frac{1}{ad-bc}begin{bmatrix} d & -c \ -b & a end{bmatrix} ne begin{bmatrix} d & -b \ -c & a end{bmatrix}$?
linear-algebra matrices linear-transformations determinant inverse
$endgroup$
Given a 2 x 2 matrix $A=begin{bmatrix} a & b \ c & d end{bmatrix}$, we have the inverse formula $A^{-1}=frac{1}{ad-bc}begin{bmatrix} d & -b \ -c & a end{bmatrix}$.
But isn't $text{Adj}(A)$ equal to $begin{bmatrix} d & -c \ -b & a end{bmatrix}$? So don't we have $frac{1}{det (A)}text{Adj}(A)=frac{1}{ad-bc}begin{bmatrix} d & -c \ -b & a end{bmatrix} ne begin{bmatrix} d & -b \ -c & a end{bmatrix}$?
linear-algebra matrices linear-transformations determinant inverse
linear-algebra matrices linear-transformations determinant inverse
asked Jan 24 at 2:11
RasputinRasputin
446211
446211
3
$begingroup$
$operatorname{Adj}(A)$ is the transpose of what you wrote.
$endgroup$
– anomaly
Jan 24 at 2:13
2
$begingroup$
Huh? No, that's not the adjugate. The cited formula for the inverse is correct.
$endgroup$
– Randall
Jan 24 at 2:13
$begingroup$
Thanks @anomaly, that explains it
$endgroup$
– Rasputin
Jan 24 at 2:15
add a comment |
3
$begingroup$
$operatorname{Adj}(A)$ is the transpose of what you wrote.
$endgroup$
– anomaly
Jan 24 at 2:13
2
$begingroup$
Huh? No, that's not the adjugate. The cited formula for the inverse is correct.
$endgroup$
– Randall
Jan 24 at 2:13
$begingroup$
Thanks @anomaly, that explains it
$endgroup$
– Rasputin
Jan 24 at 2:15
3
3
$begingroup$
$operatorname{Adj}(A)$ is the transpose of what you wrote.
$endgroup$
– anomaly
Jan 24 at 2:13
$begingroup$
$operatorname{Adj}(A)$ is the transpose of what you wrote.
$endgroup$
– anomaly
Jan 24 at 2:13
2
2
$begingroup$
Huh? No, that's not the adjugate. The cited formula for the inverse is correct.
$endgroup$
– Randall
Jan 24 at 2:13
$begingroup$
Huh? No, that's not the adjugate. The cited formula for the inverse is correct.
$endgroup$
– Randall
Jan 24 at 2:13
$begingroup$
Thanks @anomaly, that explains it
$endgroup$
– Rasputin
Jan 24 at 2:15
$begingroup$
Thanks @anomaly, that explains it
$endgroup$
– Rasputin
Jan 24 at 2:15
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The formula is true for all square invertible matrices. For adjoint A you have to take transpose of 'cofactor matrix of A'. You have not taken transpose.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085349%2fis-the-formula-a-1-frac1-det-a-textadja-really-true-for-2-x-2-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The formula is true for all square invertible matrices. For adjoint A you have to take transpose of 'cofactor matrix of A'. You have not taken transpose.
$endgroup$
add a comment |
$begingroup$
The formula is true for all square invertible matrices. For adjoint A you have to take transpose of 'cofactor matrix of A'. You have not taken transpose.
$endgroup$
add a comment |
$begingroup$
The formula is true for all square invertible matrices. For adjoint A you have to take transpose of 'cofactor matrix of A'. You have not taken transpose.
$endgroup$
The formula is true for all square invertible matrices. For adjoint A you have to take transpose of 'cofactor matrix of A'. You have not taken transpose.
answered Jan 24 at 4:29
Afzal AnsariAfzal Ansari
856
856
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085349%2fis-the-formula-a-1-frac1-det-a-textadja-really-true-for-2-x-2-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
$operatorname{Adj}(A)$ is the transpose of what you wrote.
$endgroup$
– anomaly
Jan 24 at 2:13
2
$begingroup$
Huh? No, that's not the adjugate. The cited formula for the inverse is correct.
$endgroup$
– Randall
Jan 24 at 2:13
$begingroup$
Thanks @anomaly, that explains it
$endgroup$
– Rasputin
Jan 24 at 2:15