Is there any way to simplify the following fractions? Thank you!
$begingroup$
Is there any way to simplify the following fractions?
$[n^{3}-1]/[n^{4}-1]$
$n!/n^{n}$
fractions
$endgroup$
add a comment |
$begingroup$
Is there any way to simplify the following fractions?
$[n^{3}-1]/[n^{4}-1]$
$n!/n^{n}$
fractions
$endgroup$
$begingroup$
You can factor an $n-1$ from both numerator and denominator in your first expression.
$endgroup$
– coreyman317
Jan 24 at 3:40
$begingroup$
As for the second, pick a random integer and write out the numerator and denominator as $frac{1cdot 2 cdot...cdot n}{n cdot n cdot...cdot n}$ and see which number can cancel.
$endgroup$
– coreyman317
Jan 24 at 3:43
add a comment |
$begingroup$
Is there any way to simplify the following fractions?
$[n^{3}-1]/[n^{4}-1]$
$n!/n^{n}$
fractions
$endgroup$
Is there any way to simplify the following fractions?
$[n^{3}-1]/[n^{4}-1]$
$n!/n^{n}$
fractions
fractions
asked Jan 24 at 3:37
JennyJenny
625
625
$begingroup$
You can factor an $n-1$ from both numerator and denominator in your first expression.
$endgroup$
– coreyman317
Jan 24 at 3:40
$begingroup$
As for the second, pick a random integer and write out the numerator and denominator as $frac{1cdot 2 cdot...cdot n}{n cdot n cdot...cdot n}$ and see which number can cancel.
$endgroup$
– coreyman317
Jan 24 at 3:43
add a comment |
$begingroup$
You can factor an $n-1$ from both numerator and denominator in your first expression.
$endgroup$
– coreyman317
Jan 24 at 3:40
$begingroup$
As for the second, pick a random integer and write out the numerator and denominator as $frac{1cdot 2 cdot...cdot n}{n cdot n cdot...cdot n}$ and see which number can cancel.
$endgroup$
– coreyman317
Jan 24 at 3:43
$begingroup$
You can factor an $n-1$ from both numerator and denominator in your first expression.
$endgroup$
– coreyman317
Jan 24 at 3:40
$begingroup$
You can factor an $n-1$ from both numerator and denominator in your first expression.
$endgroup$
– coreyman317
Jan 24 at 3:40
$begingroup$
As for the second, pick a random integer and write out the numerator and denominator as $frac{1cdot 2 cdot...cdot n}{n cdot n cdot...cdot n}$ and see which number can cancel.
$endgroup$
– coreyman317
Jan 24 at 3:43
$begingroup$
As for the second, pick a random integer and write out the numerator and denominator as $frac{1cdot 2 cdot...cdot n}{n cdot n cdot...cdot n}$ and see which number can cancel.
$endgroup$
– coreyman317
Jan 24 at 3:43
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Since $n^k-1 = 0$ when $n=1$, $(n-1)$ is clearly a factor. Then you can factor out $(n-1)$ by long division for example. This answer also gives a factorization of $n^k-1$.
Not much information is given except the common $n$.
$endgroup$
add a comment |
$begingroup$
For the first:
$$frac{n^3-1}{n^4-1}=frac{(n-1)(1+n+n^2)}{(n-1)(1+n+n^2+n^3)}=1-frac{n^3}{1+n+n^2+n^3}$$
For the second:
$$frac{n!}{n^n}=frac{(n-1)!}{n^{n-1}}=frac{(1-frac 1n)^{n-1}(n-2)!}{(n-1)^{n-2}}=frac{(n-k-1)!prod_{r=1}^{k}(1-frac{1}{n-r+1})^{n-r}}{(n-k)^{n-k-1}}$$ for $k in Bbb N$
$endgroup$
$begingroup$
If you're wondering how I got this, note that $$n(1-frac 1n)=n-1$$
$endgroup$
– Rhys Hughes
Jan 24 at 4:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085416%2fis-there-any-way-to-simplify-the-following-fractions-thank-you%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $n^k-1 = 0$ when $n=1$, $(n-1)$ is clearly a factor. Then you can factor out $(n-1)$ by long division for example. This answer also gives a factorization of $n^k-1$.
Not much information is given except the common $n$.
$endgroup$
add a comment |
$begingroup$
Since $n^k-1 = 0$ when $n=1$, $(n-1)$ is clearly a factor. Then you can factor out $(n-1)$ by long division for example. This answer also gives a factorization of $n^k-1$.
Not much information is given except the common $n$.
$endgroup$
add a comment |
$begingroup$
Since $n^k-1 = 0$ when $n=1$, $(n-1)$ is clearly a factor. Then you can factor out $(n-1)$ by long division for example. This answer also gives a factorization of $n^k-1$.
Not much information is given except the common $n$.
$endgroup$
Since $n^k-1 = 0$ when $n=1$, $(n-1)$ is clearly a factor. Then you can factor out $(n-1)$ by long division for example. This answer also gives a factorization of $n^k-1$.
Not much information is given except the common $n$.
answered Jan 24 at 3:48
MonkeyKingMonkeyKing
2,3211029
2,3211029
add a comment |
add a comment |
$begingroup$
For the first:
$$frac{n^3-1}{n^4-1}=frac{(n-1)(1+n+n^2)}{(n-1)(1+n+n^2+n^3)}=1-frac{n^3}{1+n+n^2+n^3}$$
For the second:
$$frac{n!}{n^n}=frac{(n-1)!}{n^{n-1}}=frac{(1-frac 1n)^{n-1}(n-2)!}{(n-1)^{n-2}}=frac{(n-k-1)!prod_{r=1}^{k}(1-frac{1}{n-r+1})^{n-r}}{(n-k)^{n-k-1}}$$ for $k in Bbb N$
$endgroup$
$begingroup$
If you're wondering how I got this, note that $$n(1-frac 1n)=n-1$$
$endgroup$
– Rhys Hughes
Jan 24 at 4:17
add a comment |
$begingroup$
For the first:
$$frac{n^3-1}{n^4-1}=frac{(n-1)(1+n+n^2)}{(n-1)(1+n+n^2+n^3)}=1-frac{n^3}{1+n+n^2+n^3}$$
For the second:
$$frac{n!}{n^n}=frac{(n-1)!}{n^{n-1}}=frac{(1-frac 1n)^{n-1}(n-2)!}{(n-1)^{n-2}}=frac{(n-k-1)!prod_{r=1}^{k}(1-frac{1}{n-r+1})^{n-r}}{(n-k)^{n-k-1}}$$ for $k in Bbb N$
$endgroup$
$begingroup$
If you're wondering how I got this, note that $$n(1-frac 1n)=n-1$$
$endgroup$
– Rhys Hughes
Jan 24 at 4:17
add a comment |
$begingroup$
For the first:
$$frac{n^3-1}{n^4-1}=frac{(n-1)(1+n+n^2)}{(n-1)(1+n+n^2+n^3)}=1-frac{n^3}{1+n+n^2+n^3}$$
For the second:
$$frac{n!}{n^n}=frac{(n-1)!}{n^{n-1}}=frac{(1-frac 1n)^{n-1}(n-2)!}{(n-1)^{n-2}}=frac{(n-k-1)!prod_{r=1}^{k}(1-frac{1}{n-r+1})^{n-r}}{(n-k)^{n-k-1}}$$ for $k in Bbb N$
$endgroup$
For the first:
$$frac{n^3-1}{n^4-1}=frac{(n-1)(1+n+n^2)}{(n-1)(1+n+n^2+n^3)}=1-frac{n^3}{1+n+n^2+n^3}$$
For the second:
$$frac{n!}{n^n}=frac{(n-1)!}{n^{n-1}}=frac{(1-frac 1n)^{n-1}(n-2)!}{(n-1)^{n-2}}=frac{(n-k-1)!prod_{r=1}^{k}(1-frac{1}{n-r+1})^{n-r}}{(n-k)^{n-k-1}}$$ for $k in Bbb N$
answered Jan 24 at 4:12
Rhys HughesRhys Hughes
7,0201630
7,0201630
$begingroup$
If you're wondering how I got this, note that $$n(1-frac 1n)=n-1$$
$endgroup$
– Rhys Hughes
Jan 24 at 4:17
add a comment |
$begingroup$
If you're wondering how I got this, note that $$n(1-frac 1n)=n-1$$
$endgroup$
– Rhys Hughes
Jan 24 at 4:17
$begingroup$
If you're wondering how I got this, note that $$n(1-frac 1n)=n-1$$
$endgroup$
– Rhys Hughes
Jan 24 at 4:17
$begingroup$
If you're wondering how I got this, note that $$n(1-frac 1n)=n-1$$
$endgroup$
– Rhys Hughes
Jan 24 at 4:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085416%2fis-there-any-way-to-simplify-the-following-fractions-thank-you%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You can factor an $n-1$ from both numerator and denominator in your first expression.
$endgroup$
– coreyman317
Jan 24 at 3:40
$begingroup$
As for the second, pick a random integer and write out the numerator and denominator as $frac{1cdot 2 cdot...cdot n}{n cdot n cdot...cdot n}$ and see which number can cancel.
$endgroup$
– coreyman317
Jan 24 at 3:43