How to show that lim $(1+1/n^k) = 1$ for $ 0<k<1$
$begingroup$
We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.
But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?
real-analysis limits
$endgroup$
add a comment |
$begingroup$
We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.
But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?
real-analysis limits
$endgroup$
4
$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06
1
$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19
add a comment |
$begingroup$
We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.
But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?
real-analysis limits
$endgroup$
We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.
But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?
real-analysis limits
real-analysis limits
edited Jan 24 at 2:15
Namaste
1
1
asked Jan 24 at 2:00
Hs PHs P
275
275
4
$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06
1
$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19
add a comment |
4
$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06
1
$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19
4
4
$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06
$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06
1
1
$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19
$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$
[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]
$endgroup$
$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085337%2fhow-to-show-that-lim-11-nk-1-for-0k1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$
[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]
$endgroup$
$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27
add a comment |
$begingroup$
Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$
[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]
$endgroup$
$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27
add a comment |
$begingroup$
Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$
[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]
$endgroup$
Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$
[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]
answered Jan 24 at 2:10
MikeMike
4,396412
4,396412
$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27
add a comment |
$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27
$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27
$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085337%2fhow-to-show-that-lim-11-nk-1-for-0k1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06
1
$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19