How to show that lim $(1+1/n^k) = 1$ for $ 0<k<1$












1












$begingroup$


We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.



But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    You forgot a power outside of your parentheses.
    $endgroup$
    – lightxbulb
    Jan 24 at 2:06






  • 1




    $begingroup$
    Yes, so I modified it
    $endgroup$
    – Hs P
    Jan 24 at 2:19
















1












$begingroup$


We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.



But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    You forgot a power outside of your parentheses.
    $endgroup$
    – lightxbulb
    Jan 24 at 2:06






  • 1




    $begingroup$
    Yes, so I modified it
    $endgroup$
    – Hs P
    Jan 24 at 2:19














1












1








1





$begingroup$


We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.



But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?










share|cite|improve this question











$endgroup$




We know that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = e$ for $k=1$.



But for $0< k< 1$ how do I show that $lim_{nrightarrow+infty}(1+frac1{n^k})^n = 1$ for $ 0<k<1$?







real-analysis limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 2:15









Namaste

1




1










asked Jan 24 at 2:00









Hs PHs P

275




275








  • 4




    $begingroup$
    You forgot a power outside of your parentheses.
    $endgroup$
    – lightxbulb
    Jan 24 at 2:06






  • 1




    $begingroup$
    Yes, so I modified it
    $endgroup$
    – Hs P
    Jan 24 at 2:19














  • 4




    $begingroup$
    You forgot a power outside of your parentheses.
    $endgroup$
    – lightxbulb
    Jan 24 at 2:06






  • 1




    $begingroup$
    Yes, so I modified it
    $endgroup$
    – Hs P
    Jan 24 at 2:19








4




4




$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06




$begingroup$
You forgot a power outside of your parentheses.
$endgroup$
– lightxbulb
Jan 24 at 2:06




1




1




$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19




$begingroup$
Yes, so I modified it
$endgroup$
– Hs P
Jan 24 at 2:19










1 Answer
1






active

oldest

votes


















1












$begingroup$

Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$





[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
    $endgroup$
    – Hs P
    Jan 24 at 2:27













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085337%2fhow-to-show-that-lim-11-nk-1-for-0k1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$





[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
    $endgroup$
    – Hs P
    Jan 24 at 2:27


















1












$begingroup$

Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$





[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
    $endgroup$
    – Hs P
    Jan 24 at 2:27
















1












1








1





$begingroup$

Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$





[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]






share|cite|improve this answer









$endgroup$



Well, $lim_{n rightarrow infty} frac{1}{n^k} = 0$ for fixed $k in (0,1)$, so $lim_{n rightarrow infty} (1-frac{1}{k})$ $ = lim_{n rightarrow infty} 1 + lim_{n rightarrow infty} frac{1}{n^k}$ $ = 1 +0 = 1.$





[Note that $lim_{n rightarrow infty} (1+frac{1}{n})^n = e$ i.e., there is the exponent $n$, and for $k<1$,
$lim_{n rightarrow infty} (1+frac{1}{n^k})^n =$ $lim_{n rightarrow infty} ((1+frac{1}{n^k})^{n^k})^{n^{1-k}} = e^{n^{1-k}} = infty $ ]







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 24 at 2:10









MikeMike

4,396412




4,396412












  • $begingroup$
    Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
    $endgroup$
    – Hs P
    Jan 24 at 2:27




















  • $begingroup$
    Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
    $endgroup$
    – Hs P
    Jan 24 at 2:27


















$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27






$begingroup$
Thank you! Maybe you assume that lim$(1+1/n)^{a_{n}}=$ lim$e^{a_{n}/n}$. Is this assumption true?
$endgroup$
– Hs P
Jan 24 at 2:27




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085337%2fhow-to-show-that-lim-11-nk-1-for-0k1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement