How to calculate the integral $intfrac{e^{ixy}}{w^2-x^2}dx$?












0












$begingroup$


How to calculate the integral$$int_{-infty}^{infty}frac{e^{ixy}}{w^2-x^2}dx$$



where w,y are constants.



I tried to separate them as



$$frac{1}{2w}int_{-infty}^{infty}(frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x})dx$$but I'm not sure this is a correct way.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Assuming that the integral is interpreted in Cauchy principal-value sense, the answer is $$ ipi left( underset{z=-w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} + underset{z=w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} right) = frac{pi sin(wy)}{w}. $$
    $endgroup$
    – Sangchul Lee
    Jan 24 at 2:51






  • 2




    $begingroup$
    If "x,w are constants" why are you integrating with respect to $x$?
    $endgroup$
    – clathratus
    Jan 24 at 3:41






  • 1




    $begingroup$
    For $Re(w) > 0$ then $frac{1}{w^2+x^2}$ is the FT of $e^{-w |t|}$. Then the case $Re(w)= 0$ (integral interpreted in principal value) is obtained with the mean value of the FT of $e^{-(w+epsilon)|t|}$ and $e^{-(-w+epsilon)|t|}$
    $endgroup$
    – reuns
    Jan 24 at 4:01












  • $begingroup$
    @SangchulLee thx, but why it's $pi i$ not $2pi i$ when you use Residue theorem?
    $endgroup$
    – kinder chen
    Jan 27 at 0:41










  • $begingroup$
    That is essentially because we only wind the poles half-times.
    $endgroup$
    – Sangchul Lee
    Jan 27 at 8:57
















0












$begingroup$


How to calculate the integral$$int_{-infty}^{infty}frac{e^{ixy}}{w^2-x^2}dx$$



where w,y are constants.



I tried to separate them as



$$frac{1}{2w}int_{-infty}^{infty}(frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x})dx$$but I'm not sure this is a correct way.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Assuming that the integral is interpreted in Cauchy principal-value sense, the answer is $$ ipi left( underset{z=-w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} + underset{z=w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} right) = frac{pi sin(wy)}{w}. $$
    $endgroup$
    – Sangchul Lee
    Jan 24 at 2:51






  • 2




    $begingroup$
    If "x,w are constants" why are you integrating with respect to $x$?
    $endgroup$
    – clathratus
    Jan 24 at 3:41






  • 1




    $begingroup$
    For $Re(w) > 0$ then $frac{1}{w^2+x^2}$ is the FT of $e^{-w |t|}$. Then the case $Re(w)= 0$ (integral interpreted in principal value) is obtained with the mean value of the FT of $e^{-(w+epsilon)|t|}$ and $e^{-(-w+epsilon)|t|}$
    $endgroup$
    – reuns
    Jan 24 at 4:01












  • $begingroup$
    @SangchulLee thx, but why it's $pi i$ not $2pi i$ when you use Residue theorem?
    $endgroup$
    – kinder chen
    Jan 27 at 0:41










  • $begingroup$
    That is essentially because we only wind the poles half-times.
    $endgroup$
    – Sangchul Lee
    Jan 27 at 8:57














0












0








0





$begingroup$


How to calculate the integral$$int_{-infty}^{infty}frac{e^{ixy}}{w^2-x^2}dx$$



where w,y are constants.



I tried to separate them as



$$frac{1}{2w}int_{-infty}^{infty}(frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x})dx$$but I'm not sure this is a correct way.










share|cite|improve this question











$endgroup$




How to calculate the integral$$int_{-infty}^{infty}frac{e^{ixy}}{w^2-x^2}dx$$



where w,y are constants.



I tried to separate them as



$$frac{1}{2w}int_{-infty}^{infty}(frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x})dx$$but I'm not sure this is a correct way.







calculus integration complex-analysis definite-integrals fourier-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 14:20









Dylan

13.9k31127




13.9k31127










asked Jan 24 at 2:45









kinder chenkinder chen

1434




1434








  • 4




    $begingroup$
    Assuming that the integral is interpreted in Cauchy principal-value sense, the answer is $$ ipi left( underset{z=-w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} + underset{z=w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} right) = frac{pi sin(wy)}{w}. $$
    $endgroup$
    – Sangchul Lee
    Jan 24 at 2:51






  • 2




    $begingroup$
    If "x,w are constants" why are you integrating with respect to $x$?
    $endgroup$
    – clathratus
    Jan 24 at 3:41






  • 1




    $begingroup$
    For $Re(w) > 0$ then $frac{1}{w^2+x^2}$ is the FT of $e^{-w |t|}$. Then the case $Re(w)= 0$ (integral interpreted in principal value) is obtained with the mean value of the FT of $e^{-(w+epsilon)|t|}$ and $e^{-(-w+epsilon)|t|}$
    $endgroup$
    – reuns
    Jan 24 at 4:01












  • $begingroup$
    @SangchulLee thx, but why it's $pi i$ not $2pi i$ when you use Residue theorem?
    $endgroup$
    – kinder chen
    Jan 27 at 0:41










  • $begingroup$
    That is essentially because we only wind the poles half-times.
    $endgroup$
    – Sangchul Lee
    Jan 27 at 8:57














  • 4




    $begingroup$
    Assuming that the integral is interpreted in Cauchy principal-value sense, the answer is $$ ipi left( underset{z=-w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} + underset{z=w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} right) = frac{pi sin(wy)}{w}. $$
    $endgroup$
    – Sangchul Lee
    Jan 24 at 2:51






  • 2




    $begingroup$
    If "x,w are constants" why are you integrating with respect to $x$?
    $endgroup$
    – clathratus
    Jan 24 at 3:41






  • 1




    $begingroup$
    For $Re(w) > 0$ then $frac{1}{w^2+x^2}$ is the FT of $e^{-w |t|}$. Then the case $Re(w)= 0$ (integral interpreted in principal value) is obtained with the mean value of the FT of $e^{-(w+epsilon)|t|}$ and $e^{-(-w+epsilon)|t|}$
    $endgroup$
    – reuns
    Jan 24 at 4:01












  • $begingroup$
    @SangchulLee thx, but why it's $pi i$ not $2pi i$ when you use Residue theorem?
    $endgroup$
    – kinder chen
    Jan 27 at 0:41










  • $begingroup$
    That is essentially because we only wind the poles half-times.
    $endgroup$
    – Sangchul Lee
    Jan 27 at 8:57








4




4




$begingroup$
Assuming that the integral is interpreted in Cauchy principal-value sense, the answer is $$ ipi left( underset{z=-w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} + underset{z=w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} right) = frac{pi sin(wy)}{w}. $$
$endgroup$
– Sangchul Lee
Jan 24 at 2:51




$begingroup$
Assuming that the integral is interpreted in Cauchy principal-value sense, the answer is $$ ipi left( underset{z=-w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} + underset{z=w}{mathrm{Res}},frac{e^{iyz}}{w^2-z^2} right) = frac{pi sin(wy)}{w}. $$
$endgroup$
– Sangchul Lee
Jan 24 at 2:51




2




2




$begingroup$
If "x,w are constants" why are you integrating with respect to $x$?
$endgroup$
– clathratus
Jan 24 at 3:41




$begingroup$
If "x,w are constants" why are you integrating with respect to $x$?
$endgroup$
– clathratus
Jan 24 at 3:41




1




1




$begingroup$
For $Re(w) > 0$ then $frac{1}{w^2+x^2}$ is the FT of $e^{-w |t|}$. Then the case $Re(w)= 0$ (integral interpreted in principal value) is obtained with the mean value of the FT of $e^{-(w+epsilon)|t|}$ and $e^{-(-w+epsilon)|t|}$
$endgroup$
– reuns
Jan 24 at 4:01






$begingroup$
For $Re(w) > 0$ then $frac{1}{w^2+x^2}$ is the FT of $e^{-w |t|}$. Then the case $Re(w)= 0$ (integral interpreted in principal value) is obtained with the mean value of the FT of $e^{-(w+epsilon)|t|}$ and $e^{-(-w+epsilon)|t|}$
$endgroup$
– reuns
Jan 24 at 4:01














$begingroup$
@SangchulLee thx, but why it's $pi i$ not $2pi i$ when you use Residue theorem?
$endgroup$
– kinder chen
Jan 27 at 0:41




$begingroup$
@SangchulLee thx, but why it's $pi i$ not $2pi i$ when you use Residue theorem?
$endgroup$
– kinder chen
Jan 27 at 0:41












$begingroup$
That is essentially because we only wind the poles half-times.
$endgroup$
– Sangchul Lee
Jan 27 at 8:57




$begingroup$
That is essentially because we only wind the poles half-times.
$endgroup$
– Sangchul Lee
Jan 27 at 8:57










1 Answer
1






active

oldest

votes


















2












$begingroup$

Consider the following contour, where $Gamma_R$ is a simicircular arc of the radius $R$ and $gamma_{pm,epsilon}$ are semicircular arcs of radius $epsilon$ centered at $pm w$, respectively.



$hspace{5em}$ Contour



If we call this contour by $C$, then the Cauchy integration formula tells that



$$ int_{C} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z = 0. $$



Now note that




  • $displaystyle left| int_{Gamma_R} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z right|
    leq frac{R}{R^2 - w^2} xrightarrow[Rtoinfty]{} 0 $
    ,


  • $displaystyle int_{gamma_{pm,epsilon}} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z
    xrightarrow[epsilonto 0^+]{} -ipi , underset{z=pm w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} $
    .



So, letting $R to infty$ and $epsilon to 0^+$, we have



$$ operatorname{PV}!int_{-infty}^{infty} frac{e^{iyx}}{w^2 - x^2} , mathrm{d}x - ipi left( underset{z=- w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} + underset{z=w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} right) = 0. $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thx, if I separate them as $frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x}$, can I use $2pi i$?
    $endgroup$
    – kinder chen
    Jan 28 at 19:40












  • $begingroup$
    @Kinder, Not quite. Essentially this appears because we are considering Cauchy principal value, not because of some special property of the integrand.
    $endgroup$
    – Sangchul Lee
    Jan 28 at 19:42












  • $begingroup$
    I'm confused which one I'm supposed to use $pi i$ or $2pi i$ compared with wikipedia. I thought the arc integral is zero, is the whole contour integral also zero?
    $endgroup$
    – kinder chen
    Jan 28 at 23:08










  • $begingroup$
    @Kinder, If you integrate a holomorphic function $f$ along a closed contour that winds the point $z_0$ counter-clockwise $n$ times, then there is $$2npi i times [text{residue of }ftext{ at }z_0]$$ contribution. If one opens up the proof, one can see that this comes from the limit $$lim_{rto0^+}int_{0}^{2npi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta})=2npi i times text{[residue]}.$$ Similarly, in my computation, we end up with computing integral of the form $$lim_{rto0^+}int_{0}^{pi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta}).$$
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:37












  • $begingroup$
    It is like the winding number around the point $z_0$ is $frac{1}{2}$.
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:40











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085383%2fhow-to-calculate-the-integral-int-fraceixyw2-x2dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Consider the following contour, where $Gamma_R$ is a simicircular arc of the radius $R$ and $gamma_{pm,epsilon}$ are semicircular arcs of radius $epsilon$ centered at $pm w$, respectively.



$hspace{5em}$ Contour



If we call this contour by $C$, then the Cauchy integration formula tells that



$$ int_{C} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z = 0. $$



Now note that




  • $displaystyle left| int_{Gamma_R} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z right|
    leq frac{R}{R^2 - w^2} xrightarrow[Rtoinfty]{} 0 $
    ,


  • $displaystyle int_{gamma_{pm,epsilon}} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z
    xrightarrow[epsilonto 0^+]{} -ipi , underset{z=pm w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} $
    .



So, letting $R to infty$ and $epsilon to 0^+$, we have



$$ operatorname{PV}!int_{-infty}^{infty} frac{e^{iyx}}{w^2 - x^2} , mathrm{d}x - ipi left( underset{z=- w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} + underset{z=w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} right) = 0. $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thx, if I separate them as $frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x}$, can I use $2pi i$?
    $endgroup$
    – kinder chen
    Jan 28 at 19:40












  • $begingroup$
    @Kinder, Not quite. Essentially this appears because we are considering Cauchy principal value, not because of some special property of the integrand.
    $endgroup$
    – Sangchul Lee
    Jan 28 at 19:42












  • $begingroup$
    I'm confused which one I'm supposed to use $pi i$ or $2pi i$ compared with wikipedia. I thought the arc integral is zero, is the whole contour integral also zero?
    $endgroup$
    – kinder chen
    Jan 28 at 23:08










  • $begingroup$
    @Kinder, If you integrate a holomorphic function $f$ along a closed contour that winds the point $z_0$ counter-clockwise $n$ times, then there is $$2npi i times [text{residue of }ftext{ at }z_0]$$ contribution. If one opens up the proof, one can see that this comes from the limit $$lim_{rto0^+}int_{0}^{2npi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta})=2npi i times text{[residue]}.$$ Similarly, in my computation, we end up with computing integral of the form $$lim_{rto0^+}int_{0}^{pi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta}).$$
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:37












  • $begingroup$
    It is like the winding number around the point $z_0$ is $frac{1}{2}$.
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:40
















2












$begingroup$

Consider the following contour, where $Gamma_R$ is a simicircular arc of the radius $R$ and $gamma_{pm,epsilon}$ are semicircular arcs of radius $epsilon$ centered at $pm w$, respectively.



$hspace{5em}$ Contour



If we call this contour by $C$, then the Cauchy integration formula tells that



$$ int_{C} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z = 0. $$



Now note that




  • $displaystyle left| int_{Gamma_R} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z right|
    leq frac{R}{R^2 - w^2} xrightarrow[Rtoinfty]{} 0 $
    ,


  • $displaystyle int_{gamma_{pm,epsilon}} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z
    xrightarrow[epsilonto 0^+]{} -ipi , underset{z=pm w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} $
    .



So, letting $R to infty$ and $epsilon to 0^+$, we have



$$ operatorname{PV}!int_{-infty}^{infty} frac{e^{iyx}}{w^2 - x^2} , mathrm{d}x - ipi left( underset{z=- w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} + underset{z=w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} right) = 0. $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thx, if I separate them as $frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x}$, can I use $2pi i$?
    $endgroup$
    – kinder chen
    Jan 28 at 19:40












  • $begingroup$
    @Kinder, Not quite. Essentially this appears because we are considering Cauchy principal value, not because of some special property of the integrand.
    $endgroup$
    – Sangchul Lee
    Jan 28 at 19:42












  • $begingroup$
    I'm confused which one I'm supposed to use $pi i$ or $2pi i$ compared with wikipedia. I thought the arc integral is zero, is the whole contour integral also zero?
    $endgroup$
    – kinder chen
    Jan 28 at 23:08










  • $begingroup$
    @Kinder, If you integrate a holomorphic function $f$ along a closed contour that winds the point $z_0$ counter-clockwise $n$ times, then there is $$2npi i times [text{residue of }ftext{ at }z_0]$$ contribution. If one opens up the proof, one can see that this comes from the limit $$lim_{rto0^+}int_{0}^{2npi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta})=2npi i times text{[residue]}.$$ Similarly, in my computation, we end up with computing integral of the form $$lim_{rto0^+}int_{0}^{pi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta}).$$
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:37












  • $begingroup$
    It is like the winding number around the point $z_0$ is $frac{1}{2}$.
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:40














2












2








2





$begingroup$

Consider the following contour, where $Gamma_R$ is a simicircular arc of the radius $R$ and $gamma_{pm,epsilon}$ are semicircular arcs of radius $epsilon$ centered at $pm w$, respectively.



$hspace{5em}$ Contour



If we call this contour by $C$, then the Cauchy integration formula tells that



$$ int_{C} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z = 0. $$



Now note that




  • $displaystyle left| int_{Gamma_R} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z right|
    leq frac{R}{R^2 - w^2} xrightarrow[Rtoinfty]{} 0 $
    ,


  • $displaystyle int_{gamma_{pm,epsilon}} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z
    xrightarrow[epsilonto 0^+]{} -ipi , underset{z=pm w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} $
    .



So, letting $R to infty$ and $epsilon to 0^+$, we have



$$ operatorname{PV}!int_{-infty}^{infty} frac{e^{iyx}}{w^2 - x^2} , mathrm{d}x - ipi left( underset{z=- w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} + underset{z=w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} right) = 0. $$






share|cite|improve this answer









$endgroup$



Consider the following contour, where $Gamma_R$ is a simicircular arc of the radius $R$ and $gamma_{pm,epsilon}$ are semicircular arcs of radius $epsilon$ centered at $pm w$, respectively.



$hspace{5em}$ Contour



If we call this contour by $C$, then the Cauchy integration formula tells that



$$ int_{C} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z = 0. $$



Now note that




  • $displaystyle left| int_{Gamma_R} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z right|
    leq frac{R}{R^2 - w^2} xrightarrow[Rtoinfty]{} 0 $
    ,


  • $displaystyle int_{gamma_{pm,epsilon}} frac{e^{iyz}}{w^2 - z^2} , mathrm{d}z
    xrightarrow[epsilonto 0^+]{} -ipi , underset{z=pm w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} $
    .



So, letting $R to infty$ and $epsilon to 0^+$, we have



$$ operatorname{PV}!int_{-infty}^{infty} frac{e^{iyx}}{w^2 - x^2} , mathrm{d}x - ipi left( underset{z=- w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} + underset{z=w}{mathrm{Res}} , frac{e^{iyz}}{w^2 - z^2} right) = 0. $$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 27 at 8:56









Sangchul LeeSangchul Lee

95.8k12171280




95.8k12171280












  • $begingroup$
    Thx, if I separate them as $frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x}$, can I use $2pi i$?
    $endgroup$
    – kinder chen
    Jan 28 at 19:40












  • $begingroup$
    @Kinder, Not quite. Essentially this appears because we are considering Cauchy principal value, not because of some special property of the integrand.
    $endgroup$
    – Sangchul Lee
    Jan 28 at 19:42












  • $begingroup$
    I'm confused which one I'm supposed to use $pi i$ or $2pi i$ compared with wikipedia. I thought the arc integral is zero, is the whole contour integral also zero?
    $endgroup$
    – kinder chen
    Jan 28 at 23:08










  • $begingroup$
    @Kinder, If you integrate a holomorphic function $f$ along a closed contour that winds the point $z_0$ counter-clockwise $n$ times, then there is $$2npi i times [text{residue of }ftext{ at }z_0]$$ contribution. If one opens up the proof, one can see that this comes from the limit $$lim_{rto0^+}int_{0}^{2npi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta})=2npi i times text{[residue]}.$$ Similarly, in my computation, we end up with computing integral of the form $$lim_{rto0^+}int_{0}^{pi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta}).$$
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:37












  • $begingroup$
    It is like the winding number around the point $z_0$ is $frac{1}{2}$.
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:40


















  • $begingroup$
    Thx, if I separate them as $frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x}$, can I use $2pi i$?
    $endgroup$
    – kinder chen
    Jan 28 at 19:40












  • $begingroup$
    @Kinder, Not quite. Essentially this appears because we are considering Cauchy principal value, not because of some special property of the integrand.
    $endgroup$
    – Sangchul Lee
    Jan 28 at 19:42












  • $begingroup$
    I'm confused which one I'm supposed to use $pi i$ or $2pi i$ compared with wikipedia. I thought the arc integral is zero, is the whole contour integral also zero?
    $endgroup$
    – kinder chen
    Jan 28 at 23:08










  • $begingroup$
    @Kinder, If you integrate a holomorphic function $f$ along a closed contour that winds the point $z_0$ counter-clockwise $n$ times, then there is $$2npi i times [text{residue of }ftext{ at }z_0]$$ contribution. If one opens up the proof, one can see that this comes from the limit $$lim_{rto0^+}int_{0}^{2npi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta})=2npi i times text{[residue]}.$$ Similarly, in my computation, we end up with computing integral of the form $$lim_{rto0^+}int_{0}^{pi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta}).$$
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:37












  • $begingroup$
    It is like the winding number around the point $z_0$ is $frac{1}{2}$.
    $endgroup$
    – Sangchul Lee
    Jan 29 at 0:40
















$begingroup$
Thx, if I separate them as $frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x}$, can I use $2pi i$?
$endgroup$
– kinder chen
Jan 28 at 19:40






$begingroup$
Thx, if I separate them as $frac{e^{ixy}}{w+x}+frac{e^{ixy}}{w-x}$, can I use $2pi i$?
$endgroup$
– kinder chen
Jan 28 at 19:40














$begingroup$
@Kinder, Not quite. Essentially this appears because we are considering Cauchy principal value, not because of some special property of the integrand.
$endgroup$
– Sangchul Lee
Jan 28 at 19:42






$begingroup$
@Kinder, Not quite. Essentially this appears because we are considering Cauchy principal value, not because of some special property of the integrand.
$endgroup$
– Sangchul Lee
Jan 28 at 19:42














$begingroup$
I'm confused which one I'm supposed to use $pi i$ or $2pi i$ compared with wikipedia. I thought the arc integral is zero, is the whole contour integral also zero?
$endgroup$
– kinder chen
Jan 28 at 23:08




$begingroup$
I'm confused which one I'm supposed to use $pi i$ or $2pi i$ compared with wikipedia. I thought the arc integral is zero, is the whole contour integral also zero?
$endgroup$
– kinder chen
Jan 28 at 23:08












$begingroup$
@Kinder, If you integrate a holomorphic function $f$ along a closed contour that winds the point $z_0$ counter-clockwise $n$ times, then there is $$2npi i times [text{residue of }ftext{ at }z_0]$$ contribution. If one opens up the proof, one can see that this comes from the limit $$lim_{rto0^+}int_{0}^{2npi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta})=2npi i times text{[residue]}.$$ Similarly, in my computation, we end up with computing integral of the form $$lim_{rto0^+}int_{0}^{pi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta}).$$
$endgroup$
– Sangchul Lee
Jan 29 at 0:37






$begingroup$
@Kinder, If you integrate a holomorphic function $f$ along a closed contour that winds the point $z_0$ counter-clockwise $n$ times, then there is $$2npi i times [text{residue of }ftext{ at }z_0]$$ contribution. If one opens up the proof, one can see that this comes from the limit $$lim_{rto0^+}int_{0}^{2npi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta})=2npi i times text{[residue]}.$$ Similarly, in my computation, we end up with computing integral of the form $$lim_{rto0^+}int_{0}^{pi}f(z_0+re^{itheta}),mathrm{d}(e^{itheta}).$$
$endgroup$
– Sangchul Lee
Jan 29 at 0:37














$begingroup$
It is like the winding number around the point $z_0$ is $frac{1}{2}$.
$endgroup$
– Sangchul Lee
Jan 29 at 0:40




$begingroup$
It is like the winding number around the point $z_0$ is $frac{1}{2}$.
$endgroup$
– Sangchul Lee
Jan 29 at 0:40


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085383%2fhow-to-calculate-the-integral-int-fraceixyw2-x2dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement