Continuity of a function between $l^p$ spaces
$begingroup$
Let us consider the function defined as
$$
F: l^4 rightarrow l^6 \
(x_1, dots,x_n, dots) mapsto (x_1^{20}, dots, x_n^{20}, dots)
$$
I am asked to prove whether this function is continuous or not.
Let us try proving the continuity, then using the $epsilon - delta$ definition I need to find, given $epsilon > 0$ a suitable $delta$ such that
$$
lvert lvert (x_1, dots,x_n, dots) - (y_1, dots,y_n, dots) rvert rvert_{l^4} = left(sum_{n in mathbb{N}}left| x_n-y_n right|^{4}right)^frac{1}{4} < delta
$$
Implies
$$
lvertlvert F(x_1, dots,x_n, dots) - F(y_1, dots,y_n, dots)rvertrvert_{l^{6}} = left(sum_{n in mathbb{N}}left| x_n^{20}-y_n^{20} right|^{6}right)^frac{1}{6} < epsilon
$$
Anyway I am stuck here since I cannot find any good inequalities, so I am starting having doubts about its continuity.
real-analysis functional-analysis lp-spaces
$endgroup$
add a comment |
$begingroup$
Let us consider the function defined as
$$
F: l^4 rightarrow l^6 \
(x_1, dots,x_n, dots) mapsto (x_1^{20}, dots, x_n^{20}, dots)
$$
I am asked to prove whether this function is continuous or not.
Let us try proving the continuity, then using the $epsilon - delta$ definition I need to find, given $epsilon > 0$ a suitable $delta$ such that
$$
lvert lvert (x_1, dots,x_n, dots) - (y_1, dots,y_n, dots) rvert rvert_{l^4} = left(sum_{n in mathbb{N}}left| x_n-y_n right|^{4}right)^frac{1}{4} < delta
$$
Implies
$$
lvertlvert F(x_1, dots,x_n, dots) - F(y_1, dots,y_n, dots)rvertrvert_{l^{6}} = left(sum_{n in mathbb{N}}left| x_n^{20}-y_n^{20} right|^{6}right)^frac{1}{6} < epsilon
$$
Anyway I am stuck here since I cannot find any good inequalities, so I am starting having doubts about its continuity.
real-analysis functional-analysis lp-spaces
$endgroup$
add a comment |
$begingroup$
Let us consider the function defined as
$$
F: l^4 rightarrow l^6 \
(x_1, dots,x_n, dots) mapsto (x_1^{20}, dots, x_n^{20}, dots)
$$
I am asked to prove whether this function is continuous or not.
Let us try proving the continuity, then using the $epsilon - delta$ definition I need to find, given $epsilon > 0$ a suitable $delta$ such that
$$
lvert lvert (x_1, dots,x_n, dots) - (y_1, dots,y_n, dots) rvert rvert_{l^4} = left(sum_{n in mathbb{N}}left| x_n-y_n right|^{4}right)^frac{1}{4} < delta
$$
Implies
$$
lvertlvert F(x_1, dots,x_n, dots) - F(y_1, dots,y_n, dots)rvertrvert_{l^{6}} = left(sum_{n in mathbb{N}}left| x_n^{20}-y_n^{20} right|^{6}right)^frac{1}{6} < epsilon
$$
Anyway I am stuck here since I cannot find any good inequalities, so I am starting having doubts about its continuity.
real-analysis functional-analysis lp-spaces
$endgroup$
Let us consider the function defined as
$$
F: l^4 rightarrow l^6 \
(x_1, dots,x_n, dots) mapsto (x_1^{20}, dots, x_n^{20}, dots)
$$
I am asked to prove whether this function is continuous or not.
Let us try proving the continuity, then using the $epsilon - delta$ definition I need to find, given $epsilon > 0$ a suitable $delta$ such that
$$
lvert lvert (x_1, dots,x_n, dots) - (y_1, dots,y_n, dots) rvert rvert_{l^4} = left(sum_{n in mathbb{N}}left| x_n-y_n right|^{4}right)^frac{1}{4} < delta
$$
Implies
$$
lvertlvert F(x_1, dots,x_n, dots) - F(y_1, dots,y_n, dots)rvertrvert_{l^{6}} = left(sum_{n in mathbb{N}}left| x_n^{20}-y_n^{20} right|^{6}right)^frac{1}{6} < epsilon
$$
Anyway I am stuck here since I cannot find any good inequalities, so I am starting having doubts about its continuity.
real-analysis functional-analysis lp-spaces
real-analysis functional-analysis lp-spaces
asked Jan 27 at 17:40


JCFJCF
354112
354112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Probably not the best proof, but the best I can think of right now.
For sequences, $|boldsymbol{x}|_qle|boldsymbol{x}|_p$ whenever $ple q$. Also, $$|x^{20}-y^{20}|=|x-y||x^{19}+cdots+y^{19}|le c|x-y|.$$ Hence $$|(x_n^{20})-(y_n^{20})|_6le c|x-y|_6le c|x-y|_4<cdelta$$
To justify the constant $c$, note that begin{align*}left|sum_{i=0}^{19}x_n^iy_n^{19-i}right|&lesum_{i=0}^{19}|x_n|^i|y_n|^{19-i}\
&lesum_{i=0}^{19}frac{i|x_n|^{19}+(19-i)|y_n|^{19}}{19}\
&= 20(|x_n|^{19}+|y_n|^{19})\
&le 20(|boldsymbol{x}|_infty^{19}+|boldsymbol{y}|_infty^{19})=c
end{align*}
$endgroup$
$begingroup$
What about the constant c: How do you control it? I think that it depends on $x,y$ hence it shouldn't be uniform for all $x_n, y_n$. Maybe I am missing something.
$endgroup$
– JCF
Jan 31 at 10:52
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089869%2fcontinuity-of-a-function-between-lp-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Probably not the best proof, but the best I can think of right now.
For sequences, $|boldsymbol{x}|_qle|boldsymbol{x}|_p$ whenever $ple q$. Also, $$|x^{20}-y^{20}|=|x-y||x^{19}+cdots+y^{19}|le c|x-y|.$$ Hence $$|(x_n^{20})-(y_n^{20})|_6le c|x-y|_6le c|x-y|_4<cdelta$$
To justify the constant $c$, note that begin{align*}left|sum_{i=0}^{19}x_n^iy_n^{19-i}right|&lesum_{i=0}^{19}|x_n|^i|y_n|^{19-i}\
&lesum_{i=0}^{19}frac{i|x_n|^{19}+(19-i)|y_n|^{19}}{19}\
&= 20(|x_n|^{19}+|y_n|^{19})\
&le 20(|boldsymbol{x}|_infty^{19}+|boldsymbol{y}|_infty^{19})=c
end{align*}
$endgroup$
$begingroup$
What about the constant c: How do you control it? I think that it depends on $x,y$ hence it shouldn't be uniform for all $x_n, y_n$. Maybe I am missing something.
$endgroup$
– JCF
Jan 31 at 10:52
add a comment |
$begingroup$
Probably not the best proof, but the best I can think of right now.
For sequences, $|boldsymbol{x}|_qle|boldsymbol{x}|_p$ whenever $ple q$. Also, $$|x^{20}-y^{20}|=|x-y||x^{19}+cdots+y^{19}|le c|x-y|.$$ Hence $$|(x_n^{20})-(y_n^{20})|_6le c|x-y|_6le c|x-y|_4<cdelta$$
To justify the constant $c$, note that begin{align*}left|sum_{i=0}^{19}x_n^iy_n^{19-i}right|&lesum_{i=0}^{19}|x_n|^i|y_n|^{19-i}\
&lesum_{i=0}^{19}frac{i|x_n|^{19}+(19-i)|y_n|^{19}}{19}\
&= 20(|x_n|^{19}+|y_n|^{19})\
&le 20(|boldsymbol{x}|_infty^{19}+|boldsymbol{y}|_infty^{19})=c
end{align*}
$endgroup$
$begingroup$
What about the constant c: How do you control it? I think that it depends on $x,y$ hence it shouldn't be uniform for all $x_n, y_n$. Maybe I am missing something.
$endgroup$
– JCF
Jan 31 at 10:52
add a comment |
$begingroup$
Probably not the best proof, but the best I can think of right now.
For sequences, $|boldsymbol{x}|_qle|boldsymbol{x}|_p$ whenever $ple q$. Also, $$|x^{20}-y^{20}|=|x-y||x^{19}+cdots+y^{19}|le c|x-y|.$$ Hence $$|(x_n^{20})-(y_n^{20})|_6le c|x-y|_6le c|x-y|_4<cdelta$$
To justify the constant $c$, note that begin{align*}left|sum_{i=0}^{19}x_n^iy_n^{19-i}right|&lesum_{i=0}^{19}|x_n|^i|y_n|^{19-i}\
&lesum_{i=0}^{19}frac{i|x_n|^{19}+(19-i)|y_n|^{19}}{19}\
&= 20(|x_n|^{19}+|y_n|^{19})\
&le 20(|boldsymbol{x}|_infty^{19}+|boldsymbol{y}|_infty^{19})=c
end{align*}
$endgroup$
Probably not the best proof, but the best I can think of right now.
For sequences, $|boldsymbol{x}|_qle|boldsymbol{x}|_p$ whenever $ple q$. Also, $$|x^{20}-y^{20}|=|x-y||x^{19}+cdots+y^{19}|le c|x-y|.$$ Hence $$|(x_n^{20})-(y_n^{20})|_6le c|x-y|_6le c|x-y|_4<cdelta$$
To justify the constant $c$, note that begin{align*}left|sum_{i=0}^{19}x_n^iy_n^{19-i}right|&lesum_{i=0}^{19}|x_n|^i|y_n|^{19-i}\
&lesum_{i=0}^{19}frac{i|x_n|^{19}+(19-i)|y_n|^{19}}{19}\
&= 20(|x_n|^{19}+|y_n|^{19})\
&le 20(|boldsymbol{x}|_infty^{19}+|boldsymbol{y}|_infty^{19})=c
end{align*}
edited Feb 1 at 9:13
answered Jan 29 at 12:11
ChrystomathChrystomath
1,838513
1,838513
$begingroup$
What about the constant c: How do you control it? I think that it depends on $x,y$ hence it shouldn't be uniform for all $x_n, y_n$. Maybe I am missing something.
$endgroup$
– JCF
Jan 31 at 10:52
add a comment |
$begingroup$
What about the constant c: How do you control it? I think that it depends on $x,y$ hence it shouldn't be uniform for all $x_n, y_n$. Maybe I am missing something.
$endgroup$
– JCF
Jan 31 at 10:52
$begingroup$
What about the constant c: How do you control it? I think that it depends on $x,y$ hence it shouldn't be uniform for all $x_n, y_n$. Maybe I am missing something.
$endgroup$
– JCF
Jan 31 at 10:52
$begingroup$
What about the constant c: How do you control it? I think that it depends on $x,y$ hence it shouldn't be uniform for all $x_n, y_n$. Maybe I am missing something.
$endgroup$
– JCF
Jan 31 at 10:52
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089869%2fcontinuity-of-a-function-between-lp-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown