Sum of series $frac85+frac{16}{65}+cdots cdots +cdots +frac{128}{2^{18}+1}$












1












$begingroup$


sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$



I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$



could some help me with this, thanks










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    these are very few terms, you can easily sum them using a simple calculator.
    $endgroup$
    – Math-fun
    Jan 4 '17 at 9:09










  • $begingroup$
    Hint: $2^{5+2}=128$.
    $endgroup$
    – Olivier Oloa
    Jan 4 '17 at 9:11












  • $begingroup$
    I think he means $sum_k a_k$
    $endgroup$
    – Alex
    Jan 4 '17 at 9:11










  • $begingroup$
    There you go. Anything else?
    $endgroup$
    – barak manos
    Jan 4 '17 at 9:16
















1












$begingroup$


sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$



I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$



could some help me with this, thanks










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    these are very few terms, you can easily sum them using a simple calculator.
    $endgroup$
    – Math-fun
    Jan 4 '17 at 9:09










  • $begingroup$
    Hint: $2^{5+2}=128$.
    $endgroup$
    – Olivier Oloa
    Jan 4 '17 at 9:11












  • $begingroup$
    I think he means $sum_k a_k$
    $endgroup$
    – Alex
    Jan 4 '17 at 9:11










  • $begingroup$
    There you go. Anything else?
    $endgroup$
    – barak manos
    Jan 4 '17 at 9:16














1












1








1





$begingroup$


sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$



I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$



could some help me with this, thanks










share|cite|improve this question











$endgroup$




sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$



I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$



could some help me with this, thanks







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 16:18









Martin Sleziak

44.9k10122276




44.9k10122276










asked Jan 4 '17 at 9:04









DXTDXT

6,0662732




6,0662732








  • 3




    $begingroup$
    these are very few terms, you can easily sum them using a simple calculator.
    $endgroup$
    – Math-fun
    Jan 4 '17 at 9:09










  • $begingroup$
    Hint: $2^{5+2}=128$.
    $endgroup$
    – Olivier Oloa
    Jan 4 '17 at 9:11












  • $begingroup$
    I think he means $sum_k a_k$
    $endgroup$
    – Alex
    Jan 4 '17 at 9:11










  • $begingroup$
    There you go. Anything else?
    $endgroup$
    – barak manos
    Jan 4 '17 at 9:16














  • 3




    $begingroup$
    these are very few terms, you can easily sum them using a simple calculator.
    $endgroup$
    – Math-fun
    Jan 4 '17 at 9:09










  • $begingroup$
    Hint: $2^{5+2}=128$.
    $endgroup$
    – Olivier Oloa
    Jan 4 '17 at 9:11












  • $begingroup$
    I think he means $sum_k a_k$
    $endgroup$
    – Alex
    Jan 4 '17 at 9:11










  • $begingroup$
    There you go. Anything else?
    $endgroup$
    – barak manos
    Jan 4 '17 at 9:16








3




3




$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09




$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09












$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11






$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11














$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11




$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11












$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16




$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16










1 Answer
1






active

oldest

votes


















3












$begingroup$

We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $



$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $



Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic



Solving n=5



$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $






share|cite|improve this answer









$endgroup$













  • $begingroup$
    @DXT The answer is correct, if you are satisfied with it, please close this problem
    $endgroup$
    – Samar Imam Zaidi
    Jan 28 at 2:07











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083082%2fsum-of-series-frac85-frac1665-cdots-cdots-cdots-frac1282181%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $



$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $



Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic



Solving n=5



$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $






share|cite|improve this answer









$endgroup$













  • $begingroup$
    @DXT The answer is correct, if you are satisfied with it, please close this problem
    $endgroup$
    – Samar Imam Zaidi
    Jan 28 at 2:07
















3












$begingroup$

We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $



$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $



Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic



Solving n=5



$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $






share|cite|improve this answer









$endgroup$













  • $begingroup$
    @DXT The answer is correct, if you are satisfied with it, please close this problem
    $endgroup$
    – Samar Imam Zaidi
    Jan 28 at 2:07














3












3








3





$begingroup$

We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $



$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $



Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic



Solving n=5



$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $






share|cite|improve this answer









$endgroup$



We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $



$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $



Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic



Solving n=5



$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 27 at 19:36









Samar Imam ZaidiSamar Imam Zaidi

1,5671520




1,5671520












  • $begingroup$
    @DXT The answer is correct, if you are satisfied with it, please close this problem
    $endgroup$
    – Samar Imam Zaidi
    Jan 28 at 2:07


















  • $begingroup$
    @DXT The answer is correct, if you are satisfied with it, please close this problem
    $endgroup$
    – Samar Imam Zaidi
    Jan 28 at 2:07
















$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07




$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083082%2fsum-of-series-frac85-frac1665-cdots-cdots-cdots-frac1282181%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

WPF add header to Image with URL pettitions [duplicate]