Sum of series $frac85+frac{16}{65}+cdots cdots +cdots +frac{128}{2^{18}+1}$
$begingroup$
sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$
I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$
could some help me with this, thanks
sequences-and-series
$endgroup$
add a comment |
$begingroup$
sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$
I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$
could some help me with this, thanks
sequences-and-series
$endgroup$
3
$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09
$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11
$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11
$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16
add a comment |
$begingroup$
sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$
I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$
could some help me with this, thanks
sequences-and-series
$endgroup$
sum of series $displaystyle frac{8}{5}+frac{16}{65}+cdots cdots +frac{128}{2^{18}+1}$
I have calculate $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1}$
could some help me with this, thanks
sequences-and-series
sequences-and-series
edited Jan 29 at 16:18
Martin Sleziak
44.9k10122276
44.9k10122276
asked Jan 4 '17 at 9:04
DXTDXT
6,0662732
6,0662732
3
$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09
$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11
$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11
$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16
add a comment |
3
$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09
$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11
$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11
$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16
3
3
$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09
$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09
$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11
$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11
$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11
$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11
$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16
$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $
$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $
Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic
Solving n=5
$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $
$endgroup$
$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083082%2fsum-of-series-frac85-frac1665-cdots-cdots-cdots-frac1282181%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $
$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $
Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic
Solving n=5
$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $
$endgroup$
$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07
add a comment |
$begingroup$
We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $
$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $
Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic
Solving n=5
$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $
$endgroup$
$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07
add a comment |
$begingroup$
We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $
$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $
Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic
Solving n=5
$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $
$endgroup$
We can write $displaystyle a_{n} = frac{2^{n+2}}{4^{2n-1}+1} $ as $displaystyle T_{n} = frac{16.2^{n}}{2^{4n}+4} $
$displaystyle T_{n} = frac{4}{2^{2n}-2.2^{n}+2}-frac{4}{2^{2n}+2.2^{n}+2} $
Adding upto n terms we get
$displaystyle S_{n} = 2-frac{4}{2^{2n}+2.2^{n}+2} $ as it is telescopic
Solving n=5
$displaystyle S_{5} = 2-frac{4}{1090}=frac{1088}{545} $
answered Jan 27 at 19:36
Samar Imam ZaidiSamar Imam Zaidi
1,5671520
1,5671520
$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07
add a comment |
$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07
$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07
$begingroup$
@DXT The answer is correct, if you are satisfied with it, please close this problem
$endgroup$
– Samar Imam Zaidi
Jan 28 at 2:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2083082%2fsum-of-series-frac85-frac1665-cdots-cdots-cdots-frac1282181%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
these are very few terms, you can easily sum them using a simple calculator.
$endgroup$
– Math-fun
Jan 4 '17 at 9:09
$begingroup$
Hint: $2^{5+2}=128$.
$endgroup$
– Olivier Oloa
Jan 4 '17 at 9:11
$begingroup$
I think he means $sum_k a_k$
$endgroup$
– Alex
Jan 4 '17 at 9:11
$begingroup$
There you go. Anything else?
$endgroup$
– barak manos
Jan 4 '17 at 9:16