Find generating function for the following conditions:
$begingroup$
$a_n=$ $2^{n+1}$ for $n:3|n$
$a_n=$ $0$ for the rest
So theres what I tried to do:
$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$
$$2^{k+1}z^k=b^k$$
$$frac{b^{k+1}}{b^k}$$
$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$
$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$
Is this the right answer?
discrete-mathematics generating-functions
$endgroup$
add a comment |
$begingroup$
$a_n=$ $2^{n+1}$ for $n:3|n$
$a_n=$ $0$ for the rest
So theres what I tried to do:
$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$
$$2^{k+1}z^k=b^k$$
$$frac{b^{k+1}}{b^k}$$
$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$
$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$
Is this the right answer?
discrete-mathematics generating-functions
$endgroup$
$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14
add a comment |
$begingroup$
$a_n=$ $2^{n+1}$ for $n:3|n$
$a_n=$ $0$ for the rest
So theres what I tried to do:
$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$
$$2^{k+1}z^k=b^k$$
$$frac{b^{k+1}}{b^k}$$
$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$
$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$
Is this the right answer?
discrete-mathematics generating-functions
$endgroup$
$a_n=$ $2^{n+1}$ for $n:3|n$
$a_n=$ $0$ for the rest
So theres what I tried to do:
$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$
$$2^{k+1}z^k=b^k$$
$$frac{b^{k+1}}{b^k}$$
$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$
$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$
Is this the right answer?
discrete-mathematics generating-functions
discrete-mathematics generating-functions
edited Jan 27 at 22:15
Arnolt Infern Kitler
asked Jan 27 at 22:02
Arnolt Infern KitlerArnolt Infern Kitler
62
62
$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14
add a comment |
$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14
$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14
$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$
$endgroup$
$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27
$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090179%2ffind-generating-function-for-the-following-conditions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$
$endgroup$
$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27
$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55
add a comment |
$begingroup$
With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$
$endgroup$
$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27
$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55
add a comment |
$begingroup$
With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$
$endgroup$
With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$
answered Jan 27 at 22:21
Felix MarinFelix Marin
68.8k7109146
68.8k7109146
$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27
$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55
add a comment |
$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27
$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55
$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27
$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27
$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55
$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090179%2ffind-generating-function-for-the-following-conditions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14