Find generating function for the following conditions:












0












$begingroup$


$a_n=$ $2^{n+1}$ for $n:3|n$



$a_n=$ $0$ for the rest



So theres what I tried to do:



$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$



$$2^{k+1}z^k=b^k$$



$$frac{b^{k+1}}{b^k}$$



$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$



$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$



Is this the right answer?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:14


















0












$begingroup$


$a_n=$ $2^{n+1}$ for $n:3|n$



$a_n=$ $0$ for the rest



So theres what I tried to do:



$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$



$$2^{k+1}z^k=b^k$$



$$frac{b^{k+1}}{b^k}$$



$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$



$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$



Is this the right answer?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:14
















0












0








0





$begingroup$


$a_n=$ $2^{n+1}$ for $n:3|n$



$a_n=$ $0$ for the rest



So theres what I tried to do:



$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$



$$2^{k+1}z^k=b^k$$



$$frac{b^{k+1}}{b^k}$$



$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$



$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$



Is this the right answer?










share|cite|improve this question











$endgroup$




$a_n=$ $2^{n+1}$ for $n:3|n$



$a_n=$ $0$ for the rest



So theres what I tried to do:



$$sum_{n=0}^{infty}a_nz^{n}=2*z^0+0*z^1+0*z^2+2^4z^3+0*z^4+0*z^5+2^7z^6+...2^{k+1}z^k$$



$$2^{k+1}z^k=b^k$$



$$frac{b^{k+1}}{b^k}$$



$$frac{2^{k+2}z^{k+1}}{2^{k+1}z^{k}}=4z$$



$$q=4z$$
$$W_0=(4z)^2$$
$$A(z)=frac{4^{z}}{1+(4z)^2}$$



Is this the right answer?







discrete-mathematics generating-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 22:15







Arnolt Infern Kitler

















asked Jan 27 at 22:02









Arnolt Infern KitlerArnolt Infern Kitler

62




62












  • $begingroup$
    $3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:14




















  • $begingroup$
    $3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:14


















$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14






$begingroup$
$3 mid 0$ is $displaystylecolor{red}{texttt{true}}$ !!!.
$endgroup$
– Felix Marin
Jan 27 at 22:14












1 Answer
1






active

oldest

votes


















0












$begingroup$

With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
    $endgroup$
    – Steve Kass
    Jan 27 at 22:27










  • $begingroup$
    @SteveKass Fine. Thanks.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:55











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090179%2ffind-generating-function-for-the-following-conditions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
    $endgroup$
    – Steve Kass
    Jan 27 at 22:27










  • $begingroup$
    @SteveKass Fine. Thanks.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:55
















0












$begingroup$

With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
    $endgroup$
    – Steve Kass
    Jan 27 at 22:27










  • $begingroup$
    @SteveKass Fine. Thanks.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:55














0












0








0





$begingroup$

With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$






share|cite|improve this answer









$endgroup$



With $displaystyleleftvert zrightvert < {1 over 2}$,
$displaystylequadsum_{n = 0}^{infty}a_{n}z^{n} = sum_{n = 0}^{infty}2^{3n + 1}, z^{3n} =
2sum_{n = 0}^{infty}left[left(2zright)^{3}right]^{n} =
bbox[#ffd,10px,border:1px groove navy]{2 over 1 - left(2zright)^{3}}$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 27 at 22:21









Felix MarinFelix Marin

68.8k7109146




68.8k7109146












  • $begingroup$
    Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
    $endgroup$
    – Steve Kass
    Jan 27 at 22:27










  • $begingroup$
    @SteveKass Fine. Thanks.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:55


















  • $begingroup$
    Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
    $endgroup$
    – Steve Kass
    Jan 27 at 22:27










  • $begingroup$
    @SteveKass Fine. Thanks.
    $endgroup$
    – Felix Marin
    Jan 27 at 22:55
















$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27




$begingroup$
Or explained with less notation, the series is a geometric series: $2 + 2^4z^3 + 2^7z^6+cdots = 2+2(8z^3)+2(8z^3)^2+cdots$. The first term is $2$ and the common ratio is $8z^3$, so the sum is $displaystyle{ 2over{1-8z^3}}$.
$endgroup$
– Steve Kass
Jan 27 at 22:27












$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55




$begingroup$
@SteveKass Fine. Thanks.
$endgroup$
– Felix Marin
Jan 27 at 22:55


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090179%2ffind-generating-function-for-the-following-conditions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$