Proving inequality involving scalar product on $mathbb{R}^n$












0












$begingroup$


Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.



I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.



For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.



Any hint?



Thanks a lot in advance










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.



    I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.



    For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.



    Any hint?



    Thanks a lot in advance










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.



      I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.



      For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.



      Any hint?



      Thanks a lot in advance










      share|cite|improve this question











      $endgroup$




      Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.



      I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.



      For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.



      Any hint?



      Thanks a lot in advance







      normed-spaces inner-product-space supremum-and-infimum






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 27 at 22:17









      max_zorn

      3,43061429




      3,43061429










      asked Jan 27 at 21:35









      eleguitareleguitar

      140114




      140114






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          When $leftlVert yrightrVertge 1$, we find that
          $$
          sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
          $$
          When $leftlVert yrightrVertle 1$, we can observe
          $$
          sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
          $$
          Thus we have
          $$
          sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
          $$
          as desired.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090148%2fproving-inequality-involving-scalar-product-on-mathbbrn%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            When $leftlVert yrightrVertge 1$, we find that
            $$
            sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
            $$
            When $leftlVert yrightrVertle 1$, we can observe
            $$
            sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
            $$
            Thus we have
            $$
            sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
            $$
            as desired.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              When $leftlVert yrightrVertge 1$, we find that
              $$
              sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
              $$
              When $leftlVert yrightrVertle 1$, we can observe
              $$
              sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
              $$
              Thus we have
              $$
              sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
              $$
              as desired.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                When $leftlVert yrightrVertge 1$, we find that
                $$
                sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
                $$
                When $leftlVert yrightrVertle 1$, we can observe
                $$
                sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
                $$
                Thus we have
                $$
                sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
                $$
                as desired.






                share|cite|improve this answer











                $endgroup$



                When $leftlVert yrightrVertge 1$, we find that
                $$
                sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
                $$
                When $leftlVert yrightrVertle 1$, we can observe
                $$
                sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
                $$
                Thus we have
                $$
                sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
                $$
                as desired.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 27 at 21:55

























                answered Jan 27 at 21:47









                SongSong

                18.5k21651




                18.5k21651






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090148%2fproving-inequality-involving-scalar-product-on-mathbbrn%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]