Proving inequality involving scalar product on $mathbb{R}^n$
$begingroup$
Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.
I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.
For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.
Any hint?
Thanks a lot in advance
normed-spaces inner-product-space supremum-and-infimum
$endgroup$
add a comment |
$begingroup$
Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.
I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.
For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.
Any hint?
Thanks a lot in advance
normed-spaces inner-product-space supremum-and-infimum
$endgroup$
add a comment |
$begingroup$
Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.
I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.
For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.
Any hint?
Thanks a lot in advance
normed-spaces inner-product-space supremum-and-infimum
$endgroup$
Suppose $n,mgeq 1$, $Asubset mathbb{R}^m$ is compact and $f:mathbb{R}^ntimes Ato mathbb{R}^n$ is a continuous function satisfying $$leftlVert f(x_1,a)-f(x_2,a)rightrVert leq LleftlVert x_1-x_2rightrVert qquad (L>0)$$ for all $x_1,x_2 in mathbb{R}^n$ and $ain A$.
I have to prove that $$f(y, a)cdot yleq K(1+{leftlVert yrightrVert}^2)qquad [1]$$ for all $yin mathbb{R}^n$ and $ain A$ where $$K=L+sup_{ain A}{leftlVert f(0,a)rightrVert}$$ and $cdot$ is the scalar product on $mathbb{R}^n$.
For all $a in A$ and $y in mathbb{R}^n$ we have, by the Cauchy-Schwarz inequality and the Lipschitz condition on $f$, $$[f(y,a)-f(0,a)]cdot yleq vert[f(y,a)-f(0,a)]cdot y|leq leftlVert f(y,a)-f(0,a)rightrVertleftlVert yrightrVertleq L{leftlVert yrightrVert}^2,$$ and therefore $$f(y,a)cdot yleq f(0,a)cdot y +L{leftlVert yrightrVert}^2leqleftlVert f(0,a)rightrVertleftlVert yrightrVert+L{leftlVert yrightrVert}^2 \ leq sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2. $$ Now the author concludes saying that this implies $[1]$, but I really don't understand why.
Any hint?
Thanks a lot in advance
normed-spaces inner-product-space supremum-and-infimum
normed-spaces inner-product-space supremum-and-infimum
edited Jan 27 at 22:17
max_zorn
3,43061429
3,43061429
asked Jan 27 at 21:35
eleguitareleguitar
140114
140114
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
When $leftlVert yrightrVertge 1$, we find that
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
$$ When $leftlVert yrightrVertle 1$, we can observe
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
$$ Thus we have
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
$$ as desired.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090148%2fproving-inequality-involving-scalar-product-on-mathbbrn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When $leftlVert yrightrVertge 1$, we find that
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
$$ When $leftlVert yrightrVertle 1$, we can observe
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
$$ Thus we have
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
$$ as desired.
$endgroup$
add a comment |
$begingroup$
When $leftlVert yrightrVertge 1$, we find that
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
$$ When $leftlVert yrightrVertle 1$, we can observe
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
$$ Thus we have
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
$$ as desired.
$endgroup$
add a comment |
$begingroup$
When $leftlVert yrightrVertge 1$, we find that
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
$$ When $leftlVert yrightrVertle 1$, we can observe
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
$$ Thus we have
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
$$ as desired.
$endgroup$
When $leftlVert yrightrVertge 1$, we find that
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K|y|^2le K(|y|^2+1).
$$ When $leftlVert yrightrVertle 1$, we can observe
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le Kle K(|y|^2+1).
$$ Thus we have
$$
sup_{a in A}leftlVert f(0,a)rightrVert leftlVert yrightrVert +L{leftlVert yrightrVert}^2le K(|y|^2+1).
$$ as desired.
edited Jan 27 at 21:55
answered Jan 27 at 21:47
SongSong
18.5k21651
18.5k21651
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090148%2fproving-inequality-involving-scalar-product-on-mathbbrn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown