Infinite grid colouring game












2












$begingroup$


Alice and Bob have an infinite sheet of paper with a square grid on it. They play the following game: taking turns, they paint the sides of the squares (Alice is using the red colour, and Bob is using the blue colour); it is not allowed to paint any side which has been painted already. Alice was the first to make the move. Prove that Bob can play in such a way that Alice could never make a closed red contour.



I have been thinking about this question for several days, and I haven't found a way to answer it. I am assuming that there is an invariant/monovariant to exploit. The question was posed exactly as written above, on an undergraduate problem-solving sheet that I stumbled across online. Every other problem on the sheet could be solved quickly in a slick manner, so I'm presuming that this one can be too.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Alice and Bob have an infinite sheet of paper with a square grid on it. They play the following game: taking turns, they paint the sides of the squares (Alice is using the red colour, and Bob is using the blue colour); it is not allowed to paint any side which has been painted already. Alice was the first to make the move. Prove that Bob can play in such a way that Alice could never make a closed red contour.



    I have been thinking about this question for several days, and I haven't found a way to answer it. I am assuming that there is an invariant/monovariant to exploit. The question was posed exactly as written above, on an undergraduate problem-solving sheet that I stumbled across online. Every other problem on the sheet could be solved quickly in a slick manner, so I'm presuming that this one can be too.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Alice and Bob have an infinite sheet of paper with a square grid on it. They play the following game: taking turns, they paint the sides of the squares (Alice is using the red colour, and Bob is using the blue colour); it is not allowed to paint any side which has been painted already. Alice was the first to make the move. Prove that Bob can play in such a way that Alice could never make a closed red contour.



      I have been thinking about this question for several days, and I haven't found a way to answer it. I am assuming that there is an invariant/monovariant to exploit. The question was posed exactly as written above, on an undergraduate problem-solving sheet that I stumbled across online. Every other problem on the sheet could be solved quickly in a slick manner, so I'm presuming that this one can be too.










      share|cite|improve this question









      $endgroup$




      Alice and Bob have an infinite sheet of paper with a square grid on it. They play the following game: taking turns, they paint the sides of the squares (Alice is using the red colour, and Bob is using the blue colour); it is not allowed to paint any side which has been painted already. Alice was the first to make the move. Prove that Bob can play in such a way that Alice could never make a closed red contour.



      I have been thinking about this question for several days, and I haven't found a way to answer it. I am assuming that there is an invariant/monovariant to exploit. The question was posed exactly as written above, on an undergraduate problem-solving sheet that I stumbled across online. Every other problem on the sheet could be solved quickly in a slick manner, so I'm presuming that this one can be too.







      problem-solving






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 27 at 22:40









      Cathal Ó CléirighCathal Ó Cléirigh

      363




      363






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090217%2finfinite-grid-colouring-game%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090217%2finfinite-grid-colouring-game%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

          Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

          A Topological Invariant for $pi_3(U(n))$