Homomorphisms and Tensor Products












1












$begingroup$


Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?










      share|cite|improve this question











      $endgroup$




      Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?







      abstract-algebra modules






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 27 at 22:41









      Bernard

      123k741117




      123k741117










      asked Jan 27 at 22:27









      Pedro SantosPedro Santos

      1609




      1609






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Hint: You may write
          $$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
          where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
          $$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
          it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).



          After that we can use
          $$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
          Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
          $$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
          and (using $z otimes q = 1otimes (zg)$)
          $$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090204%2fhomomorphisms-and-tensor-products%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Hint: You may write
            $$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
            where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
            $$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
            it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).



            After that we can use
            $$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
            Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
            $$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
            and (using $z otimes q = 1otimes (zg)$)
            $$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              Hint: You may write
              $$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
              where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
              $$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
              it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).



              After that we can use
              $$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
              Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
              $$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
              and (using $z otimes q = 1otimes (zg)$)
              $$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                Hint: You may write
                $$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
                where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
                $$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
                it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).



                After that we can use
                $$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
                Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
                $$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
                and (using $z otimes q = 1otimes (zg)$)
                $$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$






                share|cite|improve this answer











                $endgroup$



                Hint: You may write
                $$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
                where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
                $$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
                it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).



                After that we can use
                $$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
                Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
                $$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
                and (using $z otimes q = 1otimes (zg)$)
                $$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 29 at 13:49









                Fabio Lucchini

                9,51111426




                9,51111426










                answered Jan 27 at 23:04









                Severin SchravenSeverin Schraven

                6,5751935




                6,5751935






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090204%2fhomomorphisms-and-tensor-products%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$