Homomorphisms and Tensor Products
$begingroup$
Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?
abstract-algebra modules
$endgroup$
add a comment |
$begingroup$
Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?
abstract-algebra modules
$endgroup$
add a comment |
$begingroup$
Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?
abstract-algebra modules
$endgroup$
Suppose $A$ and $B$ are finitely generated $mathbb{Z}$-modules. Then if $ operatorname{Hom}_mathbb{Z}(A,B) neq 0$ and $ operatorname{Hom}_mathbb{Z}(B,A)=0$ then $B otimes mathbb{Q} =0 $ and $Aotimes mathbb{Q} neq 0$. Can u guys help me out. I've tried using the fact that any element in the tensor product is of the form $sum botimes q$ and the properties of the module homomorphisms but I'm kinda stuck , should I use the fact they $A,B cong mathbb{Z}/(d_1)opluscdots oplus mathbb{Z}/(d_k)$ ?
abstract-algebra modules
abstract-algebra modules
edited Jan 27 at 22:41
Bernard
123k741117
123k741117
asked Jan 27 at 22:27
Pedro SantosPedro Santos
1609
1609
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: You may write
$$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
$$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).
After that we can use
$$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
$$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
and (using $z otimes q = 1otimes (zg)$)
$$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090204%2fhomomorphisms-and-tensor-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: You may write
$$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
$$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).
After that we can use
$$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
$$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
and (using $z otimes q = 1otimes (zg)$)
$$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$
$endgroup$
add a comment |
$begingroup$
Hint: You may write
$$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
$$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).
After that we can use
$$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
$$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
and (using $z otimes q = 1otimes (zg)$)
$$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$
$endgroup$
add a comment |
$begingroup$
Hint: You may write
$$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
$$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).
After that we can use
$$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
$$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
and (using $z otimes q = 1otimes (zg)$)
$$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$
$endgroup$
Hint: You may write
$$ A cong bigoplus_{j=1}^m A_j, qquad B cong bigoplus_{k=1}^n B_k$$
where $A_j, B_j$ are either isomorphic to $mathbb{Z}^{d_j}$ or $mathbb{Z}/p_j^{r_j}mathbb{Z}$. Using
$$operatorname{Hom}_{mathbb{Z}} left(bigoplus_{j=1}^m A_j, bigoplus_{k=1}^n B_kright) cong bigoplus_{1leq j leq m, 1leq k leq n} operatorname{Hom}_{mathbb{Z}}(A_j, B_k)$$
it suffices to check when $operatorname{Hom}_{mathbb{Z}}(A_j, B_k) $ is trivial (or not).
After that we can use
$$ A otimes mathbb{Q} cong bigoplus_{j=1}^m (A_j otimes mathbb{Q}), qquad B otimes mathbb{Q} cong bigoplus_{k=1}^n (B_k otimes mathbb{Q}) $$
Furthermore, we have for $dneq 0$ (just use the fact that $[a]otimes c= [da]otimes (c/d)=0$)
$$ (mathbb{Z}/d mathbb{Z}) otimes mathbb{Q} cong 0$$
and (using $z otimes q = 1otimes (zg)$)
$$ mathbb{Z} otimes mathbb{Q} cong mathbb{Q} qquad text{and thus} qquad mathbb{Z}^d otimes mathbb{Q} cong mathbb{Q}^d.$$
edited Jan 29 at 13:49
Fabio Lucchini
9,51111426
9,51111426
answered Jan 27 at 23:04
Severin SchravenSeverin Schraven
6,5751935
6,5751935
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090204%2fhomomorphisms-and-tensor-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown