Cramer Rao lower bound in Cauchy distribution
$begingroup$
I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$
How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$
Can somebody help
statistics statistical-inference
$endgroup$
add a comment |
$begingroup$
I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$
How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$
Can somebody help
statistics statistical-inference
$endgroup$
add a comment |
$begingroup$
I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$
How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$
Can somebody help
statistics statistical-inference
$endgroup$
I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$
How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$
Can somebody help
statistics statistical-inference
statistics statistical-inference
edited May 22 '18 at 18:14


StubbornAtom
6,16811339
6,16811339
asked Feb 23 '17 at 18:57
UpstartUpstart
1,706617
1,706617
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.
This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.
For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$
begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}
Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}
That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.
So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$
The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.
$endgroup$
add a comment |
$begingroup$
First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
The likelihood for the Cauchy distribution is
$$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
and its logarithm is
$$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
$$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.
If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
$$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.
The most you can do is calculate the bound but it has no analytic closed solution for $theta$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2158292%2fcramer-rao-lower-bound-in-cauchy-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.
This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.
For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$
begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}
Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}
That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.
So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$
The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.
$endgroup$
add a comment |
$begingroup$
It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.
This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.
For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$
begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}
Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}
That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.
So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$
The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.
$endgroup$
add a comment |
$begingroup$
It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.
This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.
For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$
begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}
Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}
That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.
So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$
The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.
$endgroup$
It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.
This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.
For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$
begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}
Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}
That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.
So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$
The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.
answered May 22 '18 at 16:58


StubbornAtomStubbornAtom
6,16811339
6,16811339
add a comment |
add a comment |
$begingroup$
First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
The likelihood for the Cauchy distribution is
$$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
and its logarithm is
$$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
$$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.
If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
$$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.
The most you can do is calculate the bound but it has no analytic closed solution for $theta$
$endgroup$
add a comment |
$begingroup$
First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
The likelihood for the Cauchy distribution is
$$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
and its logarithm is
$$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
$$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.
If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
$$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.
The most you can do is calculate the bound but it has no analytic closed solution for $theta$
$endgroup$
add a comment |
$begingroup$
First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
The likelihood for the Cauchy distribution is
$$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
and its logarithm is
$$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
$$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.
If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
$$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.
The most you can do is calculate the bound but it has no analytic closed solution for $theta$
$endgroup$
First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
The likelihood for the Cauchy distribution is
$$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
and its logarithm is
$$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
$$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.
If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
$$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.
The most you can do is calculate the bound but it has no analytic closed solution for $theta$
edited Jun 20 '17 at 17:29
answered Jun 20 '17 at 15:33


DanielDaniel
14
14
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2158292%2fcramer-rao-lower-bound-in-cauchy-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown