Cramer Rao lower bound in Cauchy distribution












3












$begingroup$



I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$




How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$



Can somebody help










share|cite|improve this question











$endgroup$

















    3












    $begingroup$



    I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$




    How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$



    Can somebody help










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$



      I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$




      How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$



      Can somebody help










      share|cite|improve this question











      $endgroup$





      I need to calculate the Cramer Rao lower bound of variance for the parameter $theta$ of the distribution $$f(x)=frac{1}{pi(1+(x-theta)^2)}$$




      How do I proceed I have calculated $$4 Efrac{(X-theta)^2}{1+X^2+theta^2-2Xtheta}$$



      Can somebody help







      statistics statistical-inference






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 22 '18 at 18:14









      StubbornAtom

      6,16811339




      6,16811339










      asked Feb 23 '17 at 18:57









      UpstartUpstart

      1,706617




      1,706617






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.



          This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.



          For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$



          begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}



          Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}



          That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.



          So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$



          The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.






          share|cite|improve this answer









          $endgroup$





















            -1












            $begingroup$

            First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
            The likelihood for the Cauchy distribution is
            $$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
            and its logarithm is
            $$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
            The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
            $$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
            where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.



            If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
            $$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
            where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.



            The most you can do is calculate the bound but it has no analytic closed solution for $theta$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2158292%2fcramer-rao-lower-bound-in-cauchy-distribution%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.



              This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.



              For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$



              begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}



              Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}



              That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.



              So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$



              The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.



                This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.



                For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$



                begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}



                Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}



                That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.



                So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$



                The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.



                  This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.



                  For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$



                  begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}



                  Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}



                  That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.



                  So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$



                  The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.






                  share|cite|improve this answer









                  $endgroup$



                  It is easier to work with a single observation $X_1$ to find the information function $I(theta)$.



                  This is because we have the alternative expression $displaystyle I(theta)=n,text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2$.



                  For $x_1inmathbb R$ and $thetainmathbb R$, one has the density of $X_1$



                  begin{align}&f_{theta}(x_1)=frac{1}{pi((x_1-theta)^2+1)}\&vdots\&implies left[frac{partial}{partialtheta}ln f_{theta}(x_1)right]^2=4left[frac{x_1-theta}{1+(x_1-theta)^2}right]^2\&implies text{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4text{E}_{theta}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2tag{1}end{align}



                  Now, begin{align}text{E}left[frac{X_1-theta}{1+(X_1-theta)^2}right]^2&=frac{1}{pi}int_{mathbb R}left[frac{x-theta}{1+(x-theta)^2}right]^2frac{1}{1+(x-theta)^2},mathrm{d}x\&=frac{1}{pi}int_{mathbb R}frac{(x-theta)^2}{(1+(x-theta)^2)^3},mathrm{d}x\&=frac{2}{pi}int_0^inftyfrac{t^2}{(1+t^2)^3},mathrm{d}t\&=frac{1}{pi}int_0^inftyfrac{sqrt u}{(1+u)^3},mathrm{d}u\&=frac{1}{pi}Bleft(frac{3}{2},frac{3}{2}right)=frac{1}{8}end{align}



                  That is, from $(1)$, we have $displaystyletext{E}_{theta}left[frac{partial}{partialtheta}ln f_{theta}(X_1)right]^2=4timesfrac{1}{8}=frac{1}{2}quadforall,theta$.



                  So finally we get $displaystyle I(theta)=frac{n}{2}quadforall,theta$



                  The Cramer-Rao lower bound for $theta$ is then $1/I(theta)=2/nquadforall,theta$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 22 '18 at 16:58









                  StubbornAtomStubbornAtom

                  6,16811339




                  6,16811339























                      -1












                      $begingroup$

                      First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
                      The likelihood for the Cauchy distribution is
                      $$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
                      and its logarithm is
                      $$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
                      The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
                      $$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
                      where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.



                      If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
                      $$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
                      where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.



                      The most you can do is calculate the bound but it has no analytic closed solution for $theta$






                      share|cite|improve this answer











                      $endgroup$


















                        -1












                        $begingroup$

                        First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
                        The likelihood for the Cauchy distribution is
                        $$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
                        and its logarithm is
                        $$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
                        The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
                        $$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
                        where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.



                        If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
                        $$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
                        where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.



                        The most you can do is calculate the bound but it has no analytic closed solution for $theta$






                        share|cite|improve this answer











                        $endgroup$
















                          -1












                          -1








                          -1





                          $begingroup$

                          First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
                          The likelihood for the Cauchy distribution is
                          $$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
                          and its logarithm is
                          $$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
                          The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
                          $$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
                          where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.



                          If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
                          $$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
                          where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.



                          The most you can do is calculate the bound but it has no analytic closed solution for $theta$






                          share|cite|improve this answer











                          $endgroup$



                          First of all you should notice that there's no suficient estimator for the center of the bell $theta$. Let's see this.
                          The likelihood for the Cauchy distribution is
                          $$L(x;theta) = prod _i^n frac{1}{pileft [ 1+(x_i-theta)^2 right ]}, $$
                          and its logarithm is
                          $$ln L(x;theta) = -n ln pi -sum_i^nlnleft [ 1+(x_i-theta)^2 right ].$$
                          The estimator will maximize the likelihood and if there's a suficient estimator it's derivate can be factoriced i.e.:
                          $$frac{partial L(x;theta)}{partial theta} = A(theta)left[t(x)-h(theta)-b(theta)right], $$
                          where $A(theta)$ is a function exclusively from the parameter, $t(x)$ is function exclusively of your data, $h(theta$) is what you want to estimate and $b(theta)$ is a possible bias.



                          If you derivate you should notice that the Cauchy distribution can not be factorized, but Cramer-Rao lets you find a bound for the variance, that is
                          $$ Var(t) geq frac{left(frac{partial}{partial theta}(h+b)right)^2}{Eleft[(frac{partial}{partial theta}ln L)^2right]},$$
                          where the equality hold only if $frac{partial ln L}{partial theta}$ can be factorized.



                          The most you can do is calculate the bound but it has no analytic closed solution for $theta$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jun 20 '17 at 17:29

























                          answered Jun 20 '17 at 15:33









                          DanielDaniel

                          14




                          14






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2158292%2fcramer-rao-lower-bound-in-cauchy-distribution%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith