Deductions using Field axioms
$begingroup$
Deduce $alpha(-beta)=(-alpha)(beta)=-(alphabeta)$
I'm struggling with where to start and which axioms will be useful.
The axioms:
Axioms for a field $mathbb{K}$ are with respect to the additive operation $+ : mathbb{K} times mathbb{K} rightarrow mathbb{K}$:
1) $forall x,y,zin mathbb{K}: (x+y)+z = x+(y+z)$
2) $forall x,y in mathbb{K}: x+y = y+x$
3) $exists 0 in mathbb{K} $such that$ : x+0=x$
4) $forall x in mathbb{K} exists y in mathbb{K}: x+y=0 rightarrow y = -x$
for the multiplicative operation:
1) $forall x,y,z in mathbb{K}: (xy)z = x(yz)$
2) $forall x,y in mathbb{K}: xy=yx$
3) $exists 1 in K : forall x in mathbb{K}: x1=x$
4) $forall xneq 0 in mathbb{K} exists y in mathbb{K}: xy=1 rightarrow y = x^{-1}= frac{1}{x}$
and the distributivity property
$(x+y)z=xz+yz$
abstract-algebra field-theory
$endgroup$
add a comment |
$begingroup$
Deduce $alpha(-beta)=(-alpha)(beta)=-(alphabeta)$
I'm struggling with where to start and which axioms will be useful.
The axioms:
Axioms for a field $mathbb{K}$ are with respect to the additive operation $+ : mathbb{K} times mathbb{K} rightarrow mathbb{K}$:
1) $forall x,y,zin mathbb{K}: (x+y)+z = x+(y+z)$
2) $forall x,y in mathbb{K}: x+y = y+x$
3) $exists 0 in mathbb{K} $such that$ : x+0=x$
4) $forall x in mathbb{K} exists y in mathbb{K}: x+y=0 rightarrow y = -x$
for the multiplicative operation:
1) $forall x,y,z in mathbb{K}: (xy)z = x(yz)$
2) $forall x,y in mathbb{K}: xy=yx$
3) $exists 1 in K : forall x in mathbb{K}: x1=x$
4) $forall xneq 0 in mathbb{K} exists y in mathbb{K}: xy=1 rightarrow y = x^{-1}= frac{1}{x}$
and the distributivity property
$(x+y)z=xz+yz$
abstract-algebra field-theory
$endgroup$
$begingroup$
Possibly factoring out your "$-1$" through commutativity and associativity?
$endgroup$
– Hyperion
Jan 27 at 17:08
$begingroup$
You'll increase your chances of getting an answer if you include the axioms. As for a place to start, note the following: for any $x$ in the given field, $x=-(alphabeta) iff x+alphabeta=0$, this is by definition of additive inverse.
$endgroup$
– Git Gud
Jan 27 at 17:09
add a comment |
$begingroup$
Deduce $alpha(-beta)=(-alpha)(beta)=-(alphabeta)$
I'm struggling with where to start and which axioms will be useful.
The axioms:
Axioms for a field $mathbb{K}$ are with respect to the additive operation $+ : mathbb{K} times mathbb{K} rightarrow mathbb{K}$:
1) $forall x,y,zin mathbb{K}: (x+y)+z = x+(y+z)$
2) $forall x,y in mathbb{K}: x+y = y+x$
3) $exists 0 in mathbb{K} $such that$ : x+0=x$
4) $forall x in mathbb{K} exists y in mathbb{K}: x+y=0 rightarrow y = -x$
for the multiplicative operation:
1) $forall x,y,z in mathbb{K}: (xy)z = x(yz)$
2) $forall x,y in mathbb{K}: xy=yx$
3) $exists 1 in K : forall x in mathbb{K}: x1=x$
4) $forall xneq 0 in mathbb{K} exists y in mathbb{K}: xy=1 rightarrow y = x^{-1}= frac{1}{x}$
and the distributivity property
$(x+y)z=xz+yz$
abstract-algebra field-theory
$endgroup$
Deduce $alpha(-beta)=(-alpha)(beta)=-(alphabeta)$
I'm struggling with where to start and which axioms will be useful.
The axioms:
Axioms for a field $mathbb{K}$ are with respect to the additive operation $+ : mathbb{K} times mathbb{K} rightarrow mathbb{K}$:
1) $forall x,y,zin mathbb{K}: (x+y)+z = x+(y+z)$
2) $forall x,y in mathbb{K}: x+y = y+x$
3) $exists 0 in mathbb{K} $such that$ : x+0=x$
4) $forall x in mathbb{K} exists y in mathbb{K}: x+y=0 rightarrow y = -x$
for the multiplicative operation:
1) $forall x,y,z in mathbb{K}: (xy)z = x(yz)$
2) $forall x,y in mathbb{K}: xy=yx$
3) $exists 1 in K : forall x in mathbb{K}: x1=x$
4) $forall xneq 0 in mathbb{K} exists y in mathbb{K}: xy=1 rightarrow y = x^{-1}= frac{1}{x}$
and the distributivity property
$(x+y)z=xz+yz$
abstract-algebra field-theory
abstract-algebra field-theory
edited Jan 27 at 18:19
J. W. Tanner
3,8251320
3,8251320
asked Jan 27 at 17:04
m.bazzam.bazza
948
948
$begingroup$
Possibly factoring out your "$-1$" through commutativity and associativity?
$endgroup$
– Hyperion
Jan 27 at 17:08
$begingroup$
You'll increase your chances of getting an answer if you include the axioms. As for a place to start, note the following: for any $x$ in the given field, $x=-(alphabeta) iff x+alphabeta=0$, this is by definition of additive inverse.
$endgroup$
– Git Gud
Jan 27 at 17:09
add a comment |
$begingroup$
Possibly factoring out your "$-1$" through commutativity and associativity?
$endgroup$
– Hyperion
Jan 27 at 17:08
$begingroup$
You'll increase your chances of getting an answer if you include the axioms. As for a place to start, note the following: for any $x$ in the given field, $x=-(alphabeta) iff x+alphabeta=0$, this is by definition of additive inverse.
$endgroup$
– Git Gud
Jan 27 at 17:09
$begingroup$
Possibly factoring out your "$-1$" through commutativity and associativity?
$endgroup$
– Hyperion
Jan 27 at 17:08
$begingroup$
Possibly factoring out your "$-1$" through commutativity and associativity?
$endgroup$
– Hyperion
Jan 27 at 17:08
$begingroup$
You'll increase your chances of getting an answer if you include the axioms. As for a place to start, note the following: for any $x$ in the given field, $x=-(alphabeta) iff x+alphabeta=0$, this is by definition of additive inverse.
$endgroup$
– Git Gud
Jan 27 at 17:09
$begingroup$
You'll increase your chances of getting an answer if you include the axioms. As for a place to start, note the following: for any $x$ in the given field, $x=-(alphabeta) iff x+alphabeta=0$, this is by definition of additive inverse.
$endgroup$
– Git Gud
Jan 27 at 17:09
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You'll have to first prove a lemma using the axioms, namely that $x cdot 0 = 0 cdot x = 0$ for all $x$.
Once you've done that, then
$$alphabeta + alpha(-beta) = alpha(beta + (-beta)) = alpha cdot 0 = 0
$$
and so $alpha(-beta)$ is equal to the additive inverse of $alphabeta$ which is $-alphabeta$.
Similarly for $(-alpha)beta$.
$endgroup$
add a comment |
$begingroup$
Attempt at solving equality $(alpha)(-beta)=-(alphabeta)$
$alpha(-beta)=alpha((-1)(beta)=(alpha(-1))(beta)=((-1)alpha)beta)=(-1)((alpha)(beta))=(-1)(alphabeta)=-(alphabeta)$
$endgroup$
add a comment |
$begingroup$
Hint:
Use this fact: For all $alpha$, $-alpha = (-1)cdot alpha$.
Proof of the fact: $alpha+(-1)cdot alpha = 1cdot alpha + (-1)cdotalpha = (1-1)cdot alpha = 0cdot alpha = 0$.
The last equality holds because $0cdot alpha = (0+0)cdot alpha = 0cdotalpha + 0 cdot alpha$ and so by removing $0cdot alpha$ from both sides we get $0cdotalpha = 0$.
From this fact you can deduce all of the equalities. I'll do one of them and leave the rest for you
Example: $alpha cdot (-beta) = (-alpha)beta$
Proof: $alphacdot (-beta) = alphacdot ((-1)cdot beta) = (alpha cdot (-1))cdot beta = ((-1)cdot alpha)cdot beta = (-alpha)cdot beta$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089821%2fdeductions-using-field-axioms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You'll have to first prove a lemma using the axioms, namely that $x cdot 0 = 0 cdot x = 0$ for all $x$.
Once you've done that, then
$$alphabeta + alpha(-beta) = alpha(beta + (-beta)) = alpha cdot 0 = 0
$$
and so $alpha(-beta)$ is equal to the additive inverse of $alphabeta$ which is $-alphabeta$.
Similarly for $(-alpha)beta$.
$endgroup$
add a comment |
$begingroup$
You'll have to first prove a lemma using the axioms, namely that $x cdot 0 = 0 cdot x = 0$ for all $x$.
Once you've done that, then
$$alphabeta + alpha(-beta) = alpha(beta + (-beta)) = alpha cdot 0 = 0
$$
and so $alpha(-beta)$ is equal to the additive inverse of $alphabeta$ which is $-alphabeta$.
Similarly for $(-alpha)beta$.
$endgroup$
add a comment |
$begingroup$
You'll have to first prove a lemma using the axioms, namely that $x cdot 0 = 0 cdot x = 0$ for all $x$.
Once you've done that, then
$$alphabeta + alpha(-beta) = alpha(beta + (-beta)) = alpha cdot 0 = 0
$$
and so $alpha(-beta)$ is equal to the additive inverse of $alphabeta$ which is $-alphabeta$.
Similarly for $(-alpha)beta$.
$endgroup$
You'll have to first prove a lemma using the axioms, namely that $x cdot 0 = 0 cdot x = 0$ for all $x$.
Once you've done that, then
$$alphabeta + alpha(-beta) = alpha(beta + (-beta)) = alpha cdot 0 = 0
$$
and so $alpha(-beta)$ is equal to the additive inverse of $alphabeta$ which is $-alphabeta$.
Similarly for $(-alpha)beta$.
answered Jan 27 at 18:43
Lee MosherLee Mosher
51.2k33889
51.2k33889
add a comment |
add a comment |
$begingroup$
Attempt at solving equality $(alpha)(-beta)=-(alphabeta)$
$alpha(-beta)=alpha((-1)(beta)=(alpha(-1))(beta)=((-1)alpha)beta)=(-1)((alpha)(beta))=(-1)(alphabeta)=-(alphabeta)$
$endgroup$
add a comment |
$begingroup$
Attempt at solving equality $(alpha)(-beta)=-(alphabeta)$
$alpha(-beta)=alpha((-1)(beta)=(alpha(-1))(beta)=((-1)alpha)beta)=(-1)((alpha)(beta))=(-1)(alphabeta)=-(alphabeta)$
$endgroup$
add a comment |
$begingroup$
Attempt at solving equality $(alpha)(-beta)=-(alphabeta)$
$alpha(-beta)=alpha((-1)(beta)=(alpha(-1))(beta)=((-1)alpha)beta)=(-1)((alpha)(beta))=(-1)(alphabeta)=-(alphabeta)$
$endgroup$
Attempt at solving equality $(alpha)(-beta)=-(alphabeta)$
$alpha(-beta)=alpha((-1)(beta)=(alpha(-1))(beta)=((-1)alpha)beta)=(-1)((alpha)(beta))=(-1)(alphabeta)=-(alphabeta)$
answered Jan 27 at 17:20
m.bazzam.bazza
948
948
add a comment |
add a comment |
$begingroup$
Hint:
Use this fact: For all $alpha$, $-alpha = (-1)cdot alpha$.
Proof of the fact: $alpha+(-1)cdot alpha = 1cdot alpha + (-1)cdotalpha = (1-1)cdot alpha = 0cdot alpha = 0$.
The last equality holds because $0cdot alpha = (0+0)cdot alpha = 0cdotalpha + 0 cdot alpha$ and so by removing $0cdot alpha$ from both sides we get $0cdotalpha = 0$.
From this fact you can deduce all of the equalities. I'll do one of them and leave the rest for you
Example: $alpha cdot (-beta) = (-alpha)beta$
Proof: $alphacdot (-beta) = alphacdot ((-1)cdot beta) = (alpha cdot (-1))cdot beta = ((-1)cdot alpha)cdot beta = (-alpha)cdot beta$.
$endgroup$
add a comment |
$begingroup$
Hint:
Use this fact: For all $alpha$, $-alpha = (-1)cdot alpha$.
Proof of the fact: $alpha+(-1)cdot alpha = 1cdot alpha + (-1)cdotalpha = (1-1)cdot alpha = 0cdot alpha = 0$.
The last equality holds because $0cdot alpha = (0+0)cdot alpha = 0cdotalpha + 0 cdot alpha$ and so by removing $0cdot alpha$ from both sides we get $0cdotalpha = 0$.
From this fact you can deduce all of the equalities. I'll do one of them and leave the rest for you
Example: $alpha cdot (-beta) = (-alpha)beta$
Proof: $alphacdot (-beta) = alphacdot ((-1)cdot beta) = (alpha cdot (-1))cdot beta = ((-1)cdot alpha)cdot beta = (-alpha)cdot beta$.
$endgroup$
add a comment |
$begingroup$
Hint:
Use this fact: For all $alpha$, $-alpha = (-1)cdot alpha$.
Proof of the fact: $alpha+(-1)cdot alpha = 1cdot alpha + (-1)cdotalpha = (1-1)cdot alpha = 0cdot alpha = 0$.
The last equality holds because $0cdot alpha = (0+0)cdot alpha = 0cdotalpha + 0 cdot alpha$ and so by removing $0cdot alpha$ from both sides we get $0cdotalpha = 0$.
From this fact you can deduce all of the equalities. I'll do one of them and leave the rest for you
Example: $alpha cdot (-beta) = (-alpha)beta$
Proof: $alphacdot (-beta) = alphacdot ((-1)cdot beta) = (alpha cdot (-1))cdot beta = ((-1)cdot alpha)cdot beta = (-alpha)cdot beta$.
$endgroup$
Hint:
Use this fact: For all $alpha$, $-alpha = (-1)cdot alpha$.
Proof of the fact: $alpha+(-1)cdot alpha = 1cdot alpha + (-1)cdotalpha = (1-1)cdot alpha = 0cdot alpha = 0$.
The last equality holds because $0cdot alpha = (0+0)cdot alpha = 0cdotalpha + 0 cdot alpha$ and so by removing $0cdot alpha$ from both sides we get $0cdotalpha = 0$.
From this fact you can deduce all of the equalities. I'll do one of them and leave the rest for you
Example: $alpha cdot (-beta) = (-alpha)beta$
Proof: $alphacdot (-beta) = alphacdot ((-1)cdot beta) = (alpha cdot (-1))cdot beta = ((-1)cdot alpha)cdot beta = (-alpha)cdot beta$.
answered Jan 27 at 17:09
YankoYanko
8,0832830
8,0832830
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089821%2fdeductions-using-field-axioms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Possibly factoring out your "$-1$" through commutativity and associativity?
$endgroup$
– Hyperion
Jan 27 at 17:08
$begingroup$
You'll increase your chances of getting an answer if you include the axioms. As for a place to start, note the following: for any $x$ in the given field, $x=-(alphabeta) iff x+alphabeta=0$, this is by definition of additive inverse.
$endgroup$
– Git Gud
Jan 27 at 17:09