Does $sum_{n=2}^infty frac{1}{nlog(n)}$ converge or diverge? [duplicate]
This question already has an answer here:
Infinite series $sum _{n=2}^{infty } frac{1}{n log (n)}$
3 answers
Convergence of $sum_{n=3}^infty frac {1}{n ln n}$ [duplicate]
3 answers
So I know that $sum_{ninmathbb{N}}1/n$ diverges and $sum_{ninmathbb{N}}1/n^2$ converges. What about the series $sum_{n=2}^infty1/n(log(n))$? I'm pretty confident that it diverges but is there a quick justification?
calculus sequences-and-series
marked as duplicate by Martin R, Davide Giraudo, amWhy
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 20 '18 at 23:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
This question already has an answer here:
Infinite series $sum _{n=2}^{infty } frac{1}{n log (n)}$
3 answers
Convergence of $sum_{n=3}^infty frac {1}{n ln n}$ [duplicate]
3 answers
So I know that $sum_{ninmathbb{N}}1/n$ diverges and $sum_{ninmathbb{N}}1/n^2$ converges. What about the series $sum_{n=2}^infty1/n(log(n))$? I'm pretty confident that it diverges but is there a quick justification?
calculus sequences-and-series
marked as duplicate by Martin R, Davide Giraudo, amWhy
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 20 '18 at 23:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
Another one: math.stackexchange.com/q/2223275/42969.
– Martin R
Nov 20 '18 at 20:53
add a comment |
This question already has an answer here:
Infinite series $sum _{n=2}^{infty } frac{1}{n log (n)}$
3 answers
Convergence of $sum_{n=3}^infty frac {1}{n ln n}$ [duplicate]
3 answers
So I know that $sum_{ninmathbb{N}}1/n$ diverges and $sum_{ninmathbb{N}}1/n^2$ converges. What about the series $sum_{n=2}^infty1/n(log(n))$? I'm pretty confident that it diverges but is there a quick justification?
calculus sequences-and-series
This question already has an answer here:
Infinite series $sum _{n=2}^{infty } frac{1}{n log (n)}$
3 answers
Convergence of $sum_{n=3}^infty frac {1}{n ln n}$ [duplicate]
3 answers
So I know that $sum_{ninmathbb{N}}1/n$ diverges and $sum_{ninmathbb{N}}1/n^2$ converges. What about the series $sum_{n=2}^infty1/n(log(n))$? I'm pretty confident that it diverges but is there a quick justification?
This question already has an answer here:
Infinite series $sum _{n=2}^{infty } frac{1}{n log (n)}$
3 answers
Convergence of $sum_{n=3}^infty frac {1}{n ln n}$ [duplicate]
3 answers
calculus sequences-and-series
calculus sequences-and-series
asked Nov 20 '18 at 20:21


Dragonite
1,045420
1,045420
marked as duplicate by Martin R, Davide Giraudo, amWhy
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 20 '18 at 23:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Martin R, Davide Giraudo, amWhy
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 20 '18 at 23:05
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
Another one: math.stackexchange.com/q/2223275/42969.
– Martin R
Nov 20 '18 at 20:53
add a comment |
Another one: math.stackexchange.com/q/2223275/42969.
– Martin R
Nov 20 '18 at 20:53
Another one: math.stackexchange.com/q/2223275/42969.
– Martin R
Nov 20 '18 at 20:53
Another one: math.stackexchange.com/q/2223275/42969.
– Martin R
Nov 20 '18 at 20:53
add a comment |
3 Answers
3
active
oldest
votes
Diverges by Integral test, since $$displaystyle int_2^infty dfrac{dt}{t ln(t)} = int_2^infty dfrac{d}{dt} ln(ln(t))$$ diverges.
add a comment |
HINT
By Cauchy condensation test we can consider the condensed series
$$sum_{n=2}^infty frac{1}{nlog(n)} rightarrowsum_{n=2}^infty frac{2^n}{2^nlog(2^n)}$$
and the first converges if and only if the second one converges.
By the same test we can also determine the convergence for the more general case
$$sum_{n=2}^infty frac{1}{n^alog^b(n)}$$
known as Bertrand Series.
1
Thanks, this is exactly what I was looking for. :-)
– Dragonite
Nov 20 '18 at 20:23
add a comment |
I'll see if I can
come up with a discrete version
of the integral test.
$begin{array}\
ln(ln(t+1))-ln(ln(t))
&=lnleft(dfrac{ln(t+1)}{ln(t))}right)\
&=lnleft(dfrac{ln(t)+(ln(t+1)-ln(t))}{ln(t))}right)\
&=lnleft(1+dfrac{ln(t+1)-ln(t)}{ln(t))}right)\
&=lnleft(1+dfrac{ln(frac{t+1}{t})}{ln(t))}right)\
&=lnleft(1+dfrac{ln(1+frac{1}{t})}{ln(t))}right)\
&<lnleft(1+dfrac{frac{1}{t}}{ln(t))}right)
qquadtext{since } ln(1+x) < x text{ for } 0 < x\
&=lnleft(1+dfrac{1}{tln(t))}right)\
&<dfrac{1}{tln(t))}\
end{array}
$
so
$begin{array}\
sum_{k=2}^n dfrac{1}{kln(k))}
&>sum_{k=2}^n (ln(ln(k+1))-ln(ln(k)))\
&=ln(ln(n+1))-ln(ln(2)))\
&to infty\
end{array}
$
Yep - that works.
By iterating this,
we can show that
$sum_n dfrac1{nln(n)ln(ln(n))ln(ln(ln(n)))...}
$
diverges.
All that is needed is
$ln(1+x) < x$.
1
Similar approach here: math.stackexchange.com/a/2223354/42969.
– Martin R
Nov 20 '18 at 20:58
Not at all surprised.
– marty cohen
Nov 21 '18 at 4:39
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Diverges by Integral test, since $$displaystyle int_2^infty dfrac{dt}{t ln(t)} = int_2^infty dfrac{d}{dt} ln(ln(t))$$ diverges.
add a comment |
Diverges by Integral test, since $$displaystyle int_2^infty dfrac{dt}{t ln(t)} = int_2^infty dfrac{d}{dt} ln(ln(t))$$ diverges.
add a comment |
Diverges by Integral test, since $$displaystyle int_2^infty dfrac{dt}{t ln(t)} = int_2^infty dfrac{d}{dt} ln(ln(t))$$ diverges.
Diverges by Integral test, since $$displaystyle int_2^infty dfrac{dt}{t ln(t)} = int_2^infty dfrac{d}{dt} ln(ln(t))$$ diverges.
answered Nov 20 '18 at 20:23
Robert Israel
318k23208457
318k23208457
add a comment |
add a comment |
HINT
By Cauchy condensation test we can consider the condensed series
$$sum_{n=2}^infty frac{1}{nlog(n)} rightarrowsum_{n=2}^infty frac{2^n}{2^nlog(2^n)}$$
and the first converges if and only if the second one converges.
By the same test we can also determine the convergence for the more general case
$$sum_{n=2}^infty frac{1}{n^alog^b(n)}$$
known as Bertrand Series.
1
Thanks, this is exactly what I was looking for. :-)
– Dragonite
Nov 20 '18 at 20:23
add a comment |
HINT
By Cauchy condensation test we can consider the condensed series
$$sum_{n=2}^infty frac{1}{nlog(n)} rightarrowsum_{n=2}^infty frac{2^n}{2^nlog(2^n)}$$
and the first converges if and only if the second one converges.
By the same test we can also determine the convergence for the more general case
$$sum_{n=2}^infty frac{1}{n^alog^b(n)}$$
known as Bertrand Series.
1
Thanks, this is exactly what I was looking for. :-)
– Dragonite
Nov 20 '18 at 20:23
add a comment |
HINT
By Cauchy condensation test we can consider the condensed series
$$sum_{n=2}^infty frac{1}{nlog(n)} rightarrowsum_{n=2}^infty frac{2^n}{2^nlog(2^n)}$$
and the first converges if and only if the second one converges.
By the same test we can also determine the convergence for the more general case
$$sum_{n=2}^infty frac{1}{n^alog^b(n)}$$
known as Bertrand Series.
HINT
By Cauchy condensation test we can consider the condensed series
$$sum_{n=2}^infty frac{1}{nlog(n)} rightarrowsum_{n=2}^infty frac{2^n}{2^nlog(2^n)}$$
and the first converges if and only if the second one converges.
By the same test we can also determine the convergence for the more general case
$$sum_{n=2}^infty frac{1}{n^alog^b(n)}$$
known as Bertrand Series.
edited Nov 20 '18 at 20:24
answered Nov 20 '18 at 20:22


gimusi
1
1
1
Thanks, this is exactly what I was looking for. :-)
– Dragonite
Nov 20 '18 at 20:23
add a comment |
1
Thanks, this is exactly what I was looking for. :-)
– Dragonite
Nov 20 '18 at 20:23
1
1
Thanks, this is exactly what I was looking for. :-)
– Dragonite
Nov 20 '18 at 20:23
Thanks, this is exactly what I was looking for. :-)
– Dragonite
Nov 20 '18 at 20:23
add a comment |
I'll see if I can
come up with a discrete version
of the integral test.
$begin{array}\
ln(ln(t+1))-ln(ln(t))
&=lnleft(dfrac{ln(t+1)}{ln(t))}right)\
&=lnleft(dfrac{ln(t)+(ln(t+1)-ln(t))}{ln(t))}right)\
&=lnleft(1+dfrac{ln(t+1)-ln(t)}{ln(t))}right)\
&=lnleft(1+dfrac{ln(frac{t+1}{t})}{ln(t))}right)\
&=lnleft(1+dfrac{ln(1+frac{1}{t})}{ln(t))}right)\
&<lnleft(1+dfrac{frac{1}{t}}{ln(t))}right)
qquadtext{since } ln(1+x) < x text{ for } 0 < x\
&=lnleft(1+dfrac{1}{tln(t))}right)\
&<dfrac{1}{tln(t))}\
end{array}
$
so
$begin{array}\
sum_{k=2}^n dfrac{1}{kln(k))}
&>sum_{k=2}^n (ln(ln(k+1))-ln(ln(k)))\
&=ln(ln(n+1))-ln(ln(2)))\
&to infty\
end{array}
$
Yep - that works.
By iterating this,
we can show that
$sum_n dfrac1{nln(n)ln(ln(n))ln(ln(ln(n)))...}
$
diverges.
All that is needed is
$ln(1+x) < x$.
1
Similar approach here: math.stackexchange.com/a/2223354/42969.
– Martin R
Nov 20 '18 at 20:58
Not at all surprised.
– marty cohen
Nov 21 '18 at 4:39
add a comment |
I'll see if I can
come up with a discrete version
of the integral test.
$begin{array}\
ln(ln(t+1))-ln(ln(t))
&=lnleft(dfrac{ln(t+1)}{ln(t))}right)\
&=lnleft(dfrac{ln(t)+(ln(t+1)-ln(t))}{ln(t))}right)\
&=lnleft(1+dfrac{ln(t+1)-ln(t)}{ln(t))}right)\
&=lnleft(1+dfrac{ln(frac{t+1}{t})}{ln(t))}right)\
&=lnleft(1+dfrac{ln(1+frac{1}{t})}{ln(t))}right)\
&<lnleft(1+dfrac{frac{1}{t}}{ln(t))}right)
qquadtext{since } ln(1+x) < x text{ for } 0 < x\
&=lnleft(1+dfrac{1}{tln(t))}right)\
&<dfrac{1}{tln(t))}\
end{array}
$
so
$begin{array}\
sum_{k=2}^n dfrac{1}{kln(k))}
&>sum_{k=2}^n (ln(ln(k+1))-ln(ln(k)))\
&=ln(ln(n+1))-ln(ln(2)))\
&to infty\
end{array}
$
Yep - that works.
By iterating this,
we can show that
$sum_n dfrac1{nln(n)ln(ln(n))ln(ln(ln(n)))...}
$
diverges.
All that is needed is
$ln(1+x) < x$.
1
Similar approach here: math.stackexchange.com/a/2223354/42969.
– Martin R
Nov 20 '18 at 20:58
Not at all surprised.
– marty cohen
Nov 21 '18 at 4:39
add a comment |
I'll see if I can
come up with a discrete version
of the integral test.
$begin{array}\
ln(ln(t+1))-ln(ln(t))
&=lnleft(dfrac{ln(t+1)}{ln(t))}right)\
&=lnleft(dfrac{ln(t)+(ln(t+1)-ln(t))}{ln(t))}right)\
&=lnleft(1+dfrac{ln(t+1)-ln(t)}{ln(t))}right)\
&=lnleft(1+dfrac{ln(frac{t+1}{t})}{ln(t))}right)\
&=lnleft(1+dfrac{ln(1+frac{1}{t})}{ln(t))}right)\
&<lnleft(1+dfrac{frac{1}{t}}{ln(t))}right)
qquadtext{since } ln(1+x) < x text{ for } 0 < x\
&=lnleft(1+dfrac{1}{tln(t))}right)\
&<dfrac{1}{tln(t))}\
end{array}
$
so
$begin{array}\
sum_{k=2}^n dfrac{1}{kln(k))}
&>sum_{k=2}^n (ln(ln(k+1))-ln(ln(k)))\
&=ln(ln(n+1))-ln(ln(2)))\
&to infty\
end{array}
$
Yep - that works.
By iterating this,
we can show that
$sum_n dfrac1{nln(n)ln(ln(n))ln(ln(ln(n)))...}
$
diverges.
All that is needed is
$ln(1+x) < x$.
I'll see if I can
come up with a discrete version
of the integral test.
$begin{array}\
ln(ln(t+1))-ln(ln(t))
&=lnleft(dfrac{ln(t+1)}{ln(t))}right)\
&=lnleft(dfrac{ln(t)+(ln(t+1)-ln(t))}{ln(t))}right)\
&=lnleft(1+dfrac{ln(t+1)-ln(t)}{ln(t))}right)\
&=lnleft(1+dfrac{ln(frac{t+1}{t})}{ln(t))}right)\
&=lnleft(1+dfrac{ln(1+frac{1}{t})}{ln(t))}right)\
&<lnleft(1+dfrac{frac{1}{t}}{ln(t))}right)
qquadtext{since } ln(1+x) < x text{ for } 0 < x\
&=lnleft(1+dfrac{1}{tln(t))}right)\
&<dfrac{1}{tln(t))}\
end{array}
$
so
$begin{array}\
sum_{k=2}^n dfrac{1}{kln(k))}
&>sum_{k=2}^n (ln(ln(k+1))-ln(ln(k)))\
&=ln(ln(n+1))-ln(ln(2)))\
&to infty\
end{array}
$
Yep - that works.
By iterating this,
we can show that
$sum_n dfrac1{nln(n)ln(ln(n))ln(ln(ln(n)))...}
$
diverges.
All that is needed is
$ln(1+x) < x$.
answered Nov 20 '18 at 20:48
marty cohen
72.6k549127
72.6k549127
1
Similar approach here: math.stackexchange.com/a/2223354/42969.
– Martin R
Nov 20 '18 at 20:58
Not at all surprised.
– marty cohen
Nov 21 '18 at 4:39
add a comment |
1
Similar approach here: math.stackexchange.com/a/2223354/42969.
– Martin R
Nov 20 '18 at 20:58
Not at all surprised.
– marty cohen
Nov 21 '18 at 4:39
1
1
Similar approach here: math.stackexchange.com/a/2223354/42969.
– Martin R
Nov 20 '18 at 20:58
Similar approach here: math.stackexchange.com/a/2223354/42969.
– Martin R
Nov 20 '18 at 20:58
Not at all surprised.
– marty cohen
Nov 21 '18 at 4:39
Not at all surprised.
– marty cohen
Nov 21 '18 at 4:39
add a comment |
Another one: math.stackexchange.com/q/2223275/42969.
– Martin R
Nov 20 '18 at 20:53