Does there exist a “stochastically universal” two-column matrix?












0












$begingroup$


Let $mathcal{R}_{mtimes n}$ denote the family of all $mtimes n$ matrices with elements in $[0,1]$, and let $mathcal{S}_{mtimes n}$ denote the family of all $mtimes n$ row-stochastic matrices, that is, matrices $mathbf{A}inmathcal{R}_{mtimes n}$ with sum of elements in each row equal to $1$.
Let us say that a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if for every $mge 1$ and every matrix $mathbf{B}inmathcal{R}_{mtimes 2}$ there exists a row-stochastic matrix $mathbf{C}inmathcal{S}_{mtimes n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.



Question: Does there exist a stochastically universal matrix $mathbf{A}inmathcal{R}_{ntimes 2}$, for some $nge 1$? If so, how to characterize all stochastically universal matrices?



Note: This question is motivated by an attempt to answer a question on probability kernels. When considering finite measurable spaces, probability kernels correspond to stochastic matrices and the composition of kernels corresponds to the matrix multiplication. A matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ encodes two stochastic matrices in $mathcal{S}_{ntimes 2}$, that is, two probability kernels from an $n$-element measurable space into two $2$-element measurable spaces.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $mathcal{R}_{mtimes n}$ denote the family of all $mtimes n$ matrices with elements in $[0,1]$, and let $mathcal{S}_{mtimes n}$ denote the family of all $mtimes n$ row-stochastic matrices, that is, matrices $mathbf{A}inmathcal{R}_{mtimes n}$ with sum of elements in each row equal to $1$.
    Let us say that a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if for every $mge 1$ and every matrix $mathbf{B}inmathcal{R}_{mtimes 2}$ there exists a row-stochastic matrix $mathbf{C}inmathcal{S}_{mtimes n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.



    Question: Does there exist a stochastically universal matrix $mathbf{A}inmathcal{R}_{ntimes 2}$, for some $nge 1$? If so, how to characterize all stochastically universal matrices?



    Note: This question is motivated by an attempt to answer a question on probability kernels. When considering finite measurable spaces, probability kernels correspond to stochastic matrices and the composition of kernels corresponds to the matrix multiplication. A matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ encodes two stochastic matrices in $mathcal{S}_{ntimes 2}$, that is, two probability kernels from an $n$-element measurable space into two $2$-element measurable spaces.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $mathcal{R}_{mtimes n}$ denote the family of all $mtimes n$ matrices with elements in $[0,1]$, and let $mathcal{S}_{mtimes n}$ denote the family of all $mtimes n$ row-stochastic matrices, that is, matrices $mathbf{A}inmathcal{R}_{mtimes n}$ with sum of elements in each row equal to $1$.
      Let us say that a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if for every $mge 1$ and every matrix $mathbf{B}inmathcal{R}_{mtimes 2}$ there exists a row-stochastic matrix $mathbf{C}inmathcal{S}_{mtimes n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.



      Question: Does there exist a stochastically universal matrix $mathbf{A}inmathcal{R}_{ntimes 2}$, for some $nge 1$? If so, how to characterize all stochastically universal matrices?



      Note: This question is motivated by an attempt to answer a question on probability kernels. When considering finite measurable spaces, probability kernels correspond to stochastic matrices and the composition of kernels corresponds to the matrix multiplication. A matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ encodes two stochastic matrices in $mathcal{S}_{ntimes 2}$, that is, two probability kernels from an $n$-element measurable space into two $2$-element measurable spaces.










      share|cite|improve this question











      $endgroup$




      Let $mathcal{R}_{mtimes n}$ denote the family of all $mtimes n$ matrices with elements in $[0,1]$, and let $mathcal{S}_{mtimes n}$ denote the family of all $mtimes n$ row-stochastic matrices, that is, matrices $mathbf{A}inmathcal{R}_{mtimes n}$ with sum of elements in each row equal to $1$.
      Let us say that a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if for every $mge 1$ and every matrix $mathbf{B}inmathcal{R}_{mtimes 2}$ there exists a row-stochastic matrix $mathbf{C}inmathcal{S}_{mtimes n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.



      Question: Does there exist a stochastically universal matrix $mathbf{A}inmathcal{R}_{ntimes 2}$, for some $nge 1$? If so, how to characterize all stochastically universal matrices?



      Note: This question is motivated by an attempt to answer a question on probability kernels. When considering finite measurable spaces, probability kernels correspond to stochastic matrices and the composition of kernels corresponds to the matrix multiplication. A matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ encodes two stochastic matrices in $mathcal{S}_{ntimes 2}$, that is, two probability kernels from an $n$-element measurable space into two $2$-element measurable spaces.







      linear-algebra matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 9:17







      Peter Elias

















      asked Jan 22 at 10:58









      Peter EliasPeter Elias

      938415




      938415






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let $mathbf{A}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$.
          Then for every $mathbf{B}=begin{pmatrix}a_1&b_1\a_2&b_2\vdots&vdots\a_m&b_mend{pmatrix}inmathcal{R}_{mtimes 2}$ we can take
          $$mathbf{C}=begin{pmatrix}a_1-u_1&b_1-u_1&u_1&1-a_1-b_1+u_1\a_2-u_2&b_2-u_2&u_2&1-a_2-b_2+u_2\vdots&vdots&vdots&vdots\a_m-u_m&b_m-u_m&u_m&1-a_m-b_m+u_mend{pmatrix},$$ where $u_i=min{a_i,b_i}$, for every $iin{1,2,dots,m}$. It is straightforward to check that $mathbf{C}$ is a row-stochastic matrix and $mathbf{B}=mathbf{C}mathbf{A}$, hence $mathbf{A}$ is stochastically universal.



          It is also clear that if $mathbf{A}inmathcal{R}_{ntimes 2}$ contains rows $(1,0)$, $(0,1)$, $(1,1)$, $(0,0)$ then $mathbf{A}$ is stochastically universal.



          Let us show that this condition is also necessary.
          Let $mathbf{A}inmathcal{R}_{ntimes 2}$ be stochastically universal, and let $mathbf{B}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$. By the universality of $mathbf{A}$ there exists $mathbf{C}inmathcal{S}_{4times n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.
          We prove that for every $iin{1,dots,4}$ there exists $jin{1,dots,n}$ such that $b_{i,1}=a_{j,1}$ and $b_{i,2}=a_{j,2}$. Let $iin{1,dots,4}$ and $kin{1,2}$ be fixed. For $jin{1,dots,n}$ denote $a'_{j,k}=left|b_{i,k}-a_{j,k}right|$. Then either $a'_{j,k}=a_{j,k}-b_{i,k}$ for all $j$, or $a'_{j,k}=b_{i,k}-a_{j,k}$ for all $j$, hence $$sum_{j=1}^nc_{i,j},a'_{j,k}=left|b_{i,k}-sum_{j=1}^nc_{i,j},a_{j,k}right|=0.$$
          Since $sum_{j=1}^n c_{i,j}=1$ and $c_{i,j}ge 0$ for every $j$, there exists $j$ such that $c_{i,j}>0$. Then $a'_{j,1}=a'_{j,2}=0$, hence $a_{j,1}=b_{i,1}$ and $a_{j,2}=b_{i,2}$.



          Thus, a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if and only if it contains rows $(1,0)$, $(0,1)$, $(1,1)$ and $(0,0)$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083006%2fdoes-there-exist-a-stochastically-universal-two-column-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Let $mathbf{A}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$.
            Then for every $mathbf{B}=begin{pmatrix}a_1&b_1\a_2&b_2\vdots&vdots\a_m&b_mend{pmatrix}inmathcal{R}_{mtimes 2}$ we can take
            $$mathbf{C}=begin{pmatrix}a_1-u_1&b_1-u_1&u_1&1-a_1-b_1+u_1\a_2-u_2&b_2-u_2&u_2&1-a_2-b_2+u_2\vdots&vdots&vdots&vdots\a_m-u_m&b_m-u_m&u_m&1-a_m-b_m+u_mend{pmatrix},$$ where $u_i=min{a_i,b_i}$, for every $iin{1,2,dots,m}$. It is straightforward to check that $mathbf{C}$ is a row-stochastic matrix and $mathbf{B}=mathbf{C}mathbf{A}$, hence $mathbf{A}$ is stochastically universal.



            It is also clear that if $mathbf{A}inmathcal{R}_{ntimes 2}$ contains rows $(1,0)$, $(0,1)$, $(1,1)$, $(0,0)$ then $mathbf{A}$ is stochastically universal.



            Let us show that this condition is also necessary.
            Let $mathbf{A}inmathcal{R}_{ntimes 2}$ be stochastically universal, and let $mathbf{B}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$. By the universality of $mathbf{A}$ there exists $mathbf{C}inmathcal{S}_{4times n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.
            We prove that for every $iin{1,dots,4}$ there exists $jin{1,dots,n}$ such that $b_{i,1}=a_{j,1}$ and $b_{i,2}=a_{j,2}$. Let $iin{1,dots,4}$ and $kin{1,2}$ be fixed. For $jin{1,dots,n}$ denote $a'_{j,k}=left|b_{i,k}-a_{j,k}right|$. Then either $a'_{j,k}=a_{j,k}-b_{i,k}$ for all $j$, or $a'_{j,k}=b_{i,k}-a_{j,k}$ for all $j$, hence $$sum_{j=1}^nc_{i,j},a'_{j,k}=left|b_{i,k}-sum_{j=1}^nc_{i,j},a_{j,k}right|=0.$$
            Since $sum_{j=1}^n c_{i,j}=1$ and $c_{i,j}ge 0$ for every $j$, there exists $j$ such that $c_{i,j}>0$. Then $a'_{j,1}=a'_{j,2}=0$, hence $a_{j,1}=b_{i,1}$ and $a_{j,2}=b_{i,2}$.



            Thus, a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if and only if it contains rows $(1,0)$, $(0,1)$, $(1,1)$ and $(0,0)$.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Let $mathbf{A}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$.
              Then for every $mathbf{B}=begin{pmatrix}a_1&b_1\a_2&b_2\vdots&vdots\a_m&b_mend{pmatrix}inmathcal{R}_{mtimes 2}$ we can take
              $$mathbf{C}=begin{pmatrix}a_1-u_1&b_1-u_1&u_1&1-a_1-b_1+u_1\a_2-u_2&b_2-u_2&u_2&1-a_2-b_2+u_2\vdots&vdots&vdots&vdots\a_m-u_m&b_m-u_m&u_m&1-a_m-b_m+u_mend{pmatrix},$$ where $u_i=min{a_i,b_i}$, for every $iin{1,2,dots,m}$. It is straightforward to check that $mathbf{C}$ is a row-stochastic matrix and $mathbf{B}=mathbf{C}mathbf{A}$, hence $mathbf{A}$ is stochastically universal.



              It is also clear that if $mathbf{A}inmathcal{R}_{ntimes 2}$ contains rows $(1,0)$, $(0,1)$, $(1,1)$, $(0,0)$ then $mathbf{A}$ is stochastically universal.



              Let us show that this condition is also necessary.
              Let $mathbf{A}inmathcal{R}_{ntimes 2}$ be stochastically universal, and let $mathbf{B}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$. By the universality of $mathbf{A}$ there exists $mathbf{C}inmathcal{S}_{4times n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.
              We prove that for every $iin{1,dots,4}$ there exists $jin{1,dots,n}$ such that $b_{i,1}=a_{j,1}$ and $b_{i,2}=a_{j,2}$. Let $iin{1,dots,4}$ and $kin{1,2}$ be fixed. For $jin{1,dots,n}$ denote $a'_{j,k}=left|b_{i,k}-a_{j,k}right|$. Then either $a'_{j,k}=a_{j,k}-b_{i,k}$ for all $j$, or $a'_{j,k}=b_{i,k}-a_{j,k}$ for all $j$, hence $$sum_{j=1}^nc_{i,j},a'_{j,k}=left|b_{i,k}-sum_{j=1}^nc_{i,j},a_{j,k}right|=0.$$
              Since $sum_{j=1}^n c_{i,j}=1$ and $c_{i,j}ge 0$ for every $j$, there exists $j$ such that $c_{i,j}>0$. Then $a'_{j,1}=a'_{j,2}=0$, hence $a_{j,1}=b_{i,1}$ and $a_{j,2}=b_{i,2}$.



              Thus, a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if and only if it contains rows $(1,0)$, $(0,1)$, $(1,1)$ and $(0,0)$.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Let $mathbf{A}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$.
                Then for every $mathbf{B}=begin{pmatrix}a_1&b_1\a_2&b_2\vdots&vdots\a_m&b_mend{pmatrix}inmathcal{R}_{mtimes 2}$ we can take
                $$mathbf{C}=begin{pmatrix}a_1-u_1&b_1-u_1&u_1&1-a_1-b_1+u_1\a_2-u_2&b_2-u_2&u_2&1-a_2-b_2+u_2\vdots&vdots&vdots&vdots\a_m-u_m&b_m-u_m&u_m&1-a_m-b_m+u_mend{pmatrix},$$ where $u_i=min{a_i,b_i}$, for every $iin{1,2,dots,m}$. It is straightforward to check that $mathbf{C}$ is a row-stochastic matrix and $mathbf{B}=mathbf{C}mathbf{A}$, hence $mathbf{A}$ is stochastically universal.



                It is also clear that if $mathbf{A}inmathcal{R}_{ntimes 2}$ contains rows $(1,0)$, $(0,1)$, $(1,1)$, $(0,0)$ then $mathbf{A}$ is stochastically universal.



                Let us show that this condition is also necessary.
                Let $mathbf{A}inmathcal{R}_{ntimes 2}$ be stochastically universal, and let $mathbf{B}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$. By the universality of $mathbf{A}$ there exists $mathbf{C}inmathcal{S}_{4times n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.
                We prove that for every $iin{1,dots,4}$ there exists $jin{1,dots,n}$ such that $b_{i,1}=a_{j,1}$ and $b_{i,2}=a_{j,2}$. Let $iin{1,dots,4}$ and $kin{1,2}$ be fixed. For $jin{1,dots,n}$ denote $a'_{j,k}=left|b_{i,k}-a_{j,k}right|$. Then either $a'_{j,k}=a_{j,k}-b_{i,k}$ for all $j$, or $a'_{j,k}=b_{i,k}-a_{j,k}$ for all $j$, hence $$sum_{j=1}^nc_{i,j},a'_{j,k}=left|b_{i,k}-sum_{j=1}^nc_{i,j},a_{j,k}right|=0.$$
                Since $sum_{j=1}^n c_{i,j}=1$ and $c_{i,j}ge 0$ for every $j$, there exists $j$ such that $c_{i,j}>0$. Then $a'_{j,1}=a'_{j,2}=0$, hence $a_{j,1}=b_{i,1}$ and $a_{j,2}=b_{i,2}$.



                Thus, a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if and only if it contains rows $(1,0)$, $(0,1)$, $(1,1)$ and $(0,0)$.






                share|cite|improve this answer











                $endgroup$



                Let $mathbf{A}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$.
                Then for every $mathbf{B}=begin{pmatrix}a_1&b_1\a_2&b_2\vdots&vdots\a_m&b_mend{pmatrix}inmathcal{R}_{mtimes 2}$ we can take
                $$mathbf{C}=begin{pmatrix}a_1-u_1&b_1-u_1&u_1&1-a_1-b_1+u_1\a_2-u_2&b_2-u_2&u_2&1-a_2-b_2+u_2\vdots&vdots&vdots&vdots\a_m-u_m&b_m-u_m&u_m&1-a_m-b_m+u_mend{pmatrix},$$ where $u_i=min{a_i,b_i}$, for every $iin{1,2,dots,m}$. It is straightforward to check that $mathbf{C}$ is a row-stochastic matrix and $mathbf{B}=mathbf{C}mathbf{A}$, hence $mathbf{A}$ is stochastically universal.



                It is also clear that if $mathbf{A}inmathcal{R}_{ntimes 2}$ contains rows $(1,0)$, $(0,1)$, $(1,1)$, $(0,0)$ then $mathbf{A}$ is stochastically universal.



                Let us show that this condition is also necessary.
                Let $mathbf{A}inmathcal{R}_{ntimes 2}$ be stochastically universal, and let $mathbf{B}=begin{pmatrix}1&0\0&1\1&1\0&0end{pmatrix}$. By the universality of $mathbf{A}$ there exists $mathbf{C}inmathcal{S}_{4times n}$ such that $mathbf{B}=mathbf{C}mathbf{A}$.
                We prove that for every $iin{1,dots,4}$ there exists $jin{1,dots,n}$ such that $b_{i,1}=a_{j,1}$ and $b_{i,2}=a_{j,2}$. Let $iin{1,dots,4}$ and $kin{1,2}$ be fixed. For $jin{1,dots,n}$ denote $a'_{j,k}=left|b_{i,k}-a_{j,k}right|$. Then either $a'_{j,k}=a_{j,k}-b_{i,k}$ for all $j$, or $a'_{j,k}=b_{i,k}-a_{j,k}$ for all $j$, hence $$sum_{j=1}^nc_{i,j},a'_{j,k}=left|b_{i,k}-sum_{j=1}^nc_{i,j},a_{j,k}right|=0.$$
                Since $sum_{j=1}^n c_{i,j}=1$ and $c_{i,j}ge 0$ for every $j$, there exists $j$ such that $c_{i,j}>0$. Then $a'_{j,1}=a'_{j,2}=0$, hence $a_{j,1}=b_{i,1}$ and $a_{j,2}=b_{i,2}$.



                Thus, a matrix $mathbf{A}inmathcal{R}_{ntimes 2}$ is stochastically universal if and only if it contains rows $(1,0)$, $(0,1)$, $(1,1)$ and $(0,0)$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 23 at 9:19

























                answered Jan 22 at 12:24









                Peter EliasPeter Elias

                938415




                938415






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083006%2fdoes-there-exist-a-stochastically-universal-two-column-matrix%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith