Evaluate $intint_Ge^{yover x+y}dxdy$
$begingroup$
Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.
My attempt:
let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$
But still I couldn't figure out this.
calculus
$endgroup$
add a comment |
$begingroup$
Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.
My attempt:
let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$
But still I couldn't figure out this.
calculus
$endgroup$
$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54
$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00
add a comment |
$begingroup$
Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.
My attempt:
let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$
But still I couldn't figure out this.
calculus
$endgroup$
Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.
My attempt:
let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$
But still I couldn't figure out this.
calculus
calculus
asked Jan 27 at 18:40


Yibei HeYibei He
3139
3139
$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54
$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00
add a comment |
$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54
$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00
$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54
$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54
$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00
$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Consider the substitution
$$x=rcos^2phi,quad y=rsin^2phi,
$$
with $|J|=rsin2phi $, which results in
$$begin{array}{}
intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
end{array}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089964%2fevaluate-int-int-gey-over-xydxdy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider the substitution
$$x=rcos^2phi,quad y=rsin^2phi,
$$
with $|J|=rsin2phi $, which results in
$$begin{array}{}
intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
end{array}
$$
$endgroup$
add a comment |
$begingroup$
Consider the substitution
$$x=rcos^2phi,quad y=rsin^2phi,
$$
with $|J|=rsin2phi $, which results in
$$begin{array}{}
intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
end{array}
$$
$endgroup$
add a comment |
$begingroup$
Consider the substitution
$$x=rcos^2phi,quad y=rsin^2phi,
$$
with $|J|=rsin2phi $, which results in
$$begin{array}{}
intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
end{array}
$$
$endgroup$
Consider the substitution
$$x=rcos^2phi,quad y=rsin^2phi,
$$
with $|J|=rsin2phi $, which results in
$$begin{array}{}
intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
end{array}
$$
edited Jan 28 at 21:25
answered Jan 27 at 20:50
useruser
5,86511031
5,86511031
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089964%2fevaluate-int-int-gey-over-xydxdy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54
$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00