Evaluate $intint_Ge^{yover x+y}dxdy$












0












$begingroup$


Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.

My attempt:

let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$



But still I couldn't figure out this.










share|cite|improve this question









$endgroup$












  • $begingroup$
    In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
    $endgroup$
    – Robert Israel
    Jan 27 at 18:54












  • $begingroup$
    Yes, I did miss that, thank you!
    $endgroup$
    – Yibei He
    Jan 27 at 19:00
















0












$begingroup$


Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.

My attempt:

let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$



But still I couldn't figure out this.










share|cite|improve this question









$endgroup$












  • $begingroup$
    In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
    $endgroup$
    – Robert Israel
    Jan 27 at 18:54












  • $begingroup$
    Yes, I did miss that, thank you!
    $endgroup$
    – Yibei He
    Jan 27 at 19:00














0












0








0





$begingroup$


Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.

My attempt:

let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$



But still I couldn't figure out this.










share|cite|improve this question









$endgroup$




Evaluate $intint_Ge^{yover x+y}dxdy$ where G is the triangle enclosed by $x+y=1$, x axis and y axis.

My attempt:

let $u=x+y$, $v=y$, $|J|=1$
$$int_0^1int_0^{-x+1}e^{yover x+y}dydx=int_0^1int_0^1e^{vover u}dvdu$$



But still I couldn't figure out this.







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 27 at 18:40









Yibei HeYibei He

3139




3139












  • $begingroup$
    In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
    $endgroup$
    – Robert Israel
    Jan 27 at 18:54












  • $begingroup$
    Yes, I did miss that, thank you!
    $endgroup$
    – Yibei He
    Jan 27 at 19:00


















  • $begingroup$
    In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
    $endgroup$
    – Robert Israel
    Jan 27 at 18:54












  • $begingroup$
    Yes, I did miss that, thank you!
    $endgroup$
    – Yibei He
    Jan 27 at 19:00
















$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54






$begingroup$
In this triangle, $u ge v$ so you'd want the $v$ integral to go from $0$ to $u$.
$endgroup$
– Robert Israel
Jan 27 at 18:54














$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00




$begingroup$
Yes, I did miss that, thank you!
$endgroup$
– Yibei He
Jan 27 at 19:00










1 Answer
1






active

oldest

votes


















0












$begingroup$

Consider the substitution
$$x=rcos^2phi,quad y=rsin^2phi,
$$

with $|J|=rsin2phi $, which results in



$$begin{array}{}
intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
end{array}
$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089964%2fevaluate-int-int-gey-over-xydxdy%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Consider the substitution
    $$x=rcos^2phi,quad y=rsin^2phi,
    $$

    with $|J|=rsin2phi $, which results in



    $$begin{array}{}
    intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
    stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
    end{array}
    $$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Consider the substitution
      $$x=rcos^2phi,quad y=rsin^2phi,
      $$

      with $|J|=rsin2phi $, which results in



      $$begin{array}{}
      intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
      stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
      end{array}
      $$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Consider the substitution
        $$x=rcos^2phi,quad y=rsin^2phi,
        $$

        with $|J|=rsin2phi $, which results in



        $$begin{array}{}
        intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
        stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
        end{array}
        $$






        share|cite|improve this answer











        $endgroup$



        Consider the substitution
        $$x=rcos^2phi,quad y=rsin^2phi,
        $$

        with $|J|=rsin2phi $, which results in



        $$begin{array}{}
        intint_Ge^{yover x+y}dxdy=int_0^1 drint_0^{pi/2}e^{sin^2phi}rsin2phi; dphi\
        stackrel{sin^2phimapsto u}=int_0^1 rdrint_0^{1}e^udu=frac {e-1}{2}.
        end{array}
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 28 at 21:25

























        answered Jan 27 at 20:50









        useruser

        5,86511031




        5,86511031






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089964%2fevaluate-int-int-gey-over-xydxdy%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith