Finding the eigenvalues of a linear transformation without using the matrix of the linear transformation
$begingroup$
Define the linear transformation $L$ as
$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$
Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.
How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?
linear-algebra eigenvalues-eigenvectors linear-transformations
$endgroup$
add a comment |
$begingroup$
Define the linear transformation $L$ as
$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$
Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.
How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?
linear-algebra eigenvalues-eigenvectors linear-transformations
$endgroup$
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07
add a comment |
$begingroup$
Define the linear transformation $L$ as
$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$
Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.
How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?
linear-algebra eigenvalues-eigenvectors linear-transformations
$endgroup$
Define the linear transformation $L$ as
$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$
Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.
How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?
linear-algebra eigenvalues-eigenvectors linear-transformations
linear-algebra eigenvalues-eigenvectors linear-transformations
asked Jan 23 at 20:04
mrMoonpenguinmrMoonpenguin
153
153
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07
add a comment |
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It appears this all works over $Bbb R^n$:
Given that
$L(x) = x - langle x, a rangle b, tag 0$
if
$langle a, x rangle = 0, tag 1$
then
$L(x) = x, tag 2$
that is, $x$ is an eigenvector of $L$ associated with eigenvalue
$lambda = 1; tag 3$
thus the entire $n - 1$ dimensional subspace
$a^bot subset Bbb R^n tag 4$
is the $1$-eigenspace of $L$. Now if
$x = alpha b, ; alpha ne 0, tag 5$
then
$L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$
that is, $alpha b$ is a $-1$-eigenvector of $L$; also
$langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$
therefore
$Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$
since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
eigenvectors/eigenvalues of $L$.
$endgroup$
add a comment |
$begingroup$
Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084998%2ffinding-the-eigenvalues-of-a-linear-transformation-without-using-the-matrix-of-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It appears this all works over $Bbb R^n$:
Given that
$L(x) = x - langle x, a rangle b, tag 0$
if
$langle a, x rangle = 0, tag 1$
then
$L(x) = x, tag 2$
that is, $x$ is an eigenvector of $L$ associated with eigenvalue
$lambda = 1; tag 3$
thus the entire $n - 1$ dimensional subspace
$a^bot subset Bbb R^n tag 4$
is the $1$-eigenspace of $L$. Now if
$x = alpha b, ; alpha ne 0, tag 5$
then
$L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$
that is, $alpha b$ is a $-1$-eigenvector of $L$; also
$langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$
therefore
$Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$
since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
eigenvectors/eigenvalues of $L$.
$endgroup$
add a comment |
$begingroup$
It appears this all works over $Bbb R^n$:
Given that
$L(x) = x - langle x, a rangle b, tag 0$
if
$langle a, x rangle = 0, tag 1$
then
$L(x) = x, tag 2$
that is, $x$ is an eigenvector of $L$ associated with eigenvalue
$lambda = 1; tag 3$
thus the entire $n - 1$ dimensional subspace
$a^bot subset Bbb R^n tag 4$
is the $1$-eigenspace of $L$. Now if
$x = alpha b, ; alpha ne 0, tag 5$
then
$L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$
that is, $alpha b$ is a $-1$-eigenvector of $L$; also
$langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$
therefore
$Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$
since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
eigenvectors/eigenvalues of $L$.
$endgroup$
add a comment |
$begingroup$
It appears this all works over $Bbb R^n$:
Given that
$L(x) = x - langle x, a rangle b, tag 0$
if
$langle a, x rangle = 0, tag 1$
then
$L(x) = x, tag 2$
that is, $x$ is an eigenvector of $L$ associated with eigenvalue
$lambda = 1; tag 3$
thus the entire $n - 1$ dimensional subspace
$a^bot subset Bbb R^n tag 4$
is the $1$-eigenspace of $L$. Now if
$x = alpha b, ; alpha ne 0, tag 5$
then
$L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$
that is, $alpha b$ is a $-1$-eigenvector of $L$; also
$langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$
therefore
$Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$
since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
eigenvectors/eigenvalues of $L$.
$endgroup$
It appears this all works over $Bbb R^n$:
Given that
$L(x) = x - langle x, a rangle b, tag 0$
if
$langle a, x rangle = 0, tag 1$
then
$L(x) = x, tag 2$
that is, $x$ is an eigenvector of $L$ associated with eigenvalue
$lambda = 1; tag 3$
thus the entire $n - 1$ dimensional subspace
$a^bot subset Bbb R^n tag 4$
is the $1$-eigenspace of $L$. Now if
$x = alpha b, ; alpha ne 0, tag 5$
then
$L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$
that is, $alpha b$ is a $-1$-eigenvector of $L$; also
$langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$
therefore
$Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$
since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
eigenvectors/eigenvalues of $L$.
answered Jan 23 at 22:02


Robert LewisRobert Lewis
48k23067
48k23067
add a comment |
add a comment |
$begingroup$
Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.
$endgroup$
add a comment |
$begingroup$
Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.
$endgroup$
add a comment |
$begingroup$
Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.
$endgroup$
Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.
answered Jan 23 at 20:24


Oleg SmirnovOleg Smirnov
658
658
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084998%2ffinding-the-eigenvalues-of-a-linear-transformation-without-using-the-matrix-of-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06
$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07