Finding the eigenvalues of a linear transformation without using the matrix of the linear transformation












1












$begingroup$


Define the linear transformation $L$ as



$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$



Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.



How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:06










  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:07
















1












$begingroup$


Define the linear transformation $L$ as



$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$



Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.



How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:06










  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:07














1












1








1


1



$begingroup$


Define the linear transformation $L$ as



$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$



Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.



How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?










share|cite|improve this question









$endgroup$




Define the linear transformation $L$ as



$L: mathbb{R}^3 rightarrow mathbb{R}^3: x rightarrow x - langle x, a rangle b$



Let $a, b in mathbb{R}^3$ such that $langle a, b rangle = 2$ and let $langle .,. rangle $ be the standard inner product of $mathbb{R}^3$.



How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?







linear-algebra eigenvalues-eigenvectors linear-transformations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 23 at 20:04









mrMoonpenguinmrMoonpenguin

153




153












  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:06










  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:07


















  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:06










  • $begingroup$
    Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
    $endgroup$
    – Smilia
    Jan 23 at 20:07
















$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06




$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:06












$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07




$begingroup$
Did you try to find $lambda$ in $f(v)=lambda v$ for some vector $vin mathbb{R}^3setminus 0$?
$endgroup$
– Smilia
Jan 23 at 20:07










2 Answers
2






active

oldest

votes


















1












$begingroup$

It appears this all works over $Bbb R^n$:



Given that



$L(x) = x - langle x, a rangle b, tag 0$



if



$langle a, x rangle = 0, tag 1$



then



$L(x) = x, tag 2$



that is, $x$ is an eigenvector of $L$ associated with eigenvalue



$lambda = 1; tag 3$



thus the entire $n - 1$ dimensional subspace



$a^bot subset Bbb R^n tag 4$



is the $1$-eigenspace of $L$. Now if



$x = alpha b, ; alpha ne 0, tag 5$



then



$L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$



that is, $alpha b$ is a $-1$-eigenvector of $L$; also



$langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$



therefore



$Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$



since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
eigenvectors/eigenvalues of $L$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084998%2ffinding-the-eigenvalues-of-a-linear-transformation-without-using-the-matrix-of-t%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      It appears this all works over $Bbb R^n$:



      Given that



      $L(x) = x - langle x, a rangle b, tag 0$



      if



      $langle a, x rangle = 0, tag 1$



      then



      $L(x) = x, tag 2$



      that is, $x$ is an eigenvector of $L$ associated with eigenvalue



      $lambda = 1; tag 3$



      thus the entire $n - 1$ dimensional subspace



      $a^bot subset Bbb R^n tag 4$



      is the $1$-eigenspace of $L$. Now if



      $x = alpha b, ; alpha ne 0, tag 5$



      then



      $L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$



      that is, $alpha b$ is a $-1$-eigenvector of $L$; also



      $langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$



      therefore



      $Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$



      since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
      eigenvectors/eigenvalues of $L$.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        It appears this all works over $Bbb R^n$:



        Given that



        $L(x) = x - langle x, a rangle b, tag 0$



        if



        $langle a, x rangle = 0, tag 1$



        then



        $L(x) = x, tag 2$



        that is, $x$ is an eigenvector of $L$ associated with eigenvalue



        $lambda = 1; tag 3$



        thus the entire $n - 1$ dimensional subspace



        $a^bot subset Bbb R^n tag 4$



        is the $1$-eigenspace of $L$. Now if



        $x = alpha b, ; alpha ne 0, tag 5$



        then



        $L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$



        that is, $alpha b$ is a $-1$-eigenvector of $L$; also



        $langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$



        therefore



        $Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$



        since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
        eigenvectors/eigenvalues of $L$.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          It appears this all works over $Bbb R^n$:



          Given that



          $L(x) = x - langle x, a rangle b, tag 0$



          if



          $langle a, x rangle = 0, tag 1$



          then



          $L(x) = x, tag 2$



          that is, $x$ is an eigenvector of $L$ associated with eigenvalue



          $lambda = 1; tag 3$



          thus the entire $n - 1$ dimensional subspace



          $a^bot subset Bbb R^n tag 4$



          is the $1$-eigenspace of $L$. Now if



          $x = alpha b, ; alpha ne 0, tag 5$



          then



          $L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$



          that is, $alpha b$ is a $-1$-eigenvector of $L$; also



          $langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$



          therefore



          $Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$



          since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
          eigenvectors/eigenvalues of $L$.






          share|cite|improve this answer









          $endgroup$



          It appears this all works over $Bbb R^n$:



          Given that



          $L(x) = x - langle x, a rangle b, tag 0$



          if



          $langle a, x rangle = 0, tag 1$



          then



          $L(x) = x, tag 2$



          that is, $x$ is an eigenvector of $L$ associated with eigenvalue



          $lambda = 1; tag 3$



          thus the entire $n - 1$ dimensional subspace



          $a^bot subset Bbb R^n tag 4$



          is the $1$-eigenspace of $L$. Now if



          $x = alpha b, ; alpha ne 0, tag 5$



          then



          $L(x) = L(alpha b) = alpha b - langle alpha b, a rangle b = alpha b - alpha langle b, a rangle b = alpha b - 2alpha b = -alpha b; tag 6$



          that is, $alpha b$ is a $-1$-eigenvector of $L$; also



          $langle b, a rangle = 2 ne 0 Longrightarrow b notin a^bot; tag 7$



          therefore



          $Bbb R^n = a^bot + {alpha b, alpha in Bbb R}; tag 8$



          since $a^bot$ and $b$ generate $Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the
          eigenvectors/eigenvalues of $L$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 23 at 22:02









          Robert LewisRobert Lewis

          48k23067




          48k23067























              1












              $begingroup$

              Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.






                  share|cite|improve this answer









                  $endgroup$



                  Hint: Assuming that $L(x)=x-langle x,arangle b=lambda x$ one obtains the equation $(1-lambda)x=langle x,arangle b$. It is easy to find the eigenvalues from this equation.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 23 at 20:24









                  Oleg SmirnovOleg Smirnov

                  658




                  658






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084998%2ffinding-the-eigenvalues-of-a-linear-transformation-without-using-the-matrix-of-t%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith