Fourier Transform of derivative of $xf(x)$?












1












$begingroup$


What is the Fourier transform of $$frac{partial}{partial x}(xf(x))$$



Shall I separate the product first? Then what is the Fourier transform of $$xfrac{partial}{partial x}f(x)$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    For your original question - assuming things are nice, you can integrate by parts to get $-it$ times Fourier transform of $xf(x)$.
    $endgroup$
    – herb steinberg
    Jan 25 at 0:52


















1












$begingroup$


What is the Fourier transform of $$frac{partial}{partial x}(xf(x))$$



Shall I separate the product first? Then what is the Fourier transform of $$xfrac{partial}{partial x}f(x)$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    For your original question - assuming things are nice, you can integrate by parts to get $-it$ times Fourier transform of $xf(x)$.
    $endgroup$
    – herb steinberg
    Jan 25 at 0:52
















1












1








1


0



$begingroup$


What is the Fourier transform of $$frac{partial}{partial x}(xf(x))$$



Shall I separate the product first? Then what is the Fourier transform of $$xfrac{partial}{partial x}f(x)$$










share|cite|improve this question









$endgroup$




What is the Fourier transform of $$frac{partial}{partial x}(xf(x))$$



Shall I separate the product first? Then what is the Fourier transform of $$xfrac{partial}{partial x}f(x)$$







calculus fourier-analysis fourier-transform






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 25 at 0:07









kinder chenkinder chen

1434




1434












  • $begingroup$
    For your original question - assuming things are nice, you can integrate by parts to get $-it$ times Fourier transform of $xf(x)$.
    $endgroup$
    – herb steinberg
    Jan 25 at 0:52




















  • $begingroup$
    For your original question - assuming things are nice, you can integrate by parts to get $-it$ times Fourier transform of $xf(x)$.
    $endgroup$
    – herb steinberg
    Jan 25 at 0:52


















$begingroup$
For your original question - assuming things are nice, you can integrate by parts to get $-it$ times Fourier transform of $xf(x)$.
$endgroup$
– herb steinberg
Jan 25 at 0:52






$begingroup$
For your original question - assuming things are nice, you can integrate by parts to get $-it$ times Fourier transform of $xf(x)$.
$endgroup$
– herb steinberg
Jan 25 at 0:52












1 Answer
1






active

oldest

votes


















3












$begingroup$

Using this definition of the Fourier Transform



$$F(s) = mathscr{F}left{f(x)right} = int_{-infty}^infty f(x) e^{-2pi i sx} space dx$$



and these two theorems



$$mathscr{F}left{dfrac{d}{dx}f(x)right} = 2pi i sF(s)$$



$$mathscr{F}left{-2pi i xf(x)right} = dfrac{d}{ds}F(s)= F'(s)$$



one can derive the answer



$$begin{align*}mathscr{F}left{dfrac{d}{dx}left(xf(x)right)right} &= 2pi i smathscr{F}left{xf(x)right} \
\
&= - smathscr{F}left{-2pi i xf(x)right} \
\
&= -sdfrac{d}{ds}F(s)\
\
&= -s F'(s)
end{align*}$$



Update to add a proof of the 2nd theorem
$$begin{align*}mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= int_{-infty}^infty {left[dfrac{d}{ds}F(s)right]e^{2pi i xs}}ds \
\
&= int_{-infty}^infty {lim_{Delta s to 0}{dfrac{F(s+Delta s) - F(s)}{Delta s}}e^{2pi i xs}}ds \
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s+Delta s)e^{2pi i xs}}ds -int_{-infty}^infty {F(s)e^{2pi i xs}}dsright]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s')e^{2pi i x(s'-Delta s)}}ds' -f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[e^{-2pi i xDelta s}int_{-infty}^infty {F(s')e^{2pi i xs'}}ds'-f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i xDelta s}f(x)-f(x)}{Delta s}}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i x(0+Delta s)}-e^{-2pi i x0}}{Delta s}f(x)}\
\
&= left(dfrac{d}{ds}e^{-2pi i xs}right)biggr|_{s=0} space f(x)\
\
mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= -2pi i x f(x)\
\
dfrac{d}{ds}F(s) &= mathscr{F}left{-2pi i x f(x)right}\
\
end{align*}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thx, can you elaborate your 2nd theorem about $F'(s)$ pls?
    $endgroup$
    – kinder chen
    Jan 27 at 1:33










  • $begingroup$
    Well, it's the dual of the first theorem. There is a symmetry between the Fourier Transform and the Inverse Fourier Transform with the normalization convention I normally use. Although the symmetry isn't perfect as evinced by the negative sign, which pops up in duals of Fourier Transform theorems.
    $endgroup$
    – Andy Walls
    Jan 27 at 2:56











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086544%2ffourier-transform-of-derivative-of-xfx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Using this definition of the Fourier Transform



$$F(s) = mathscr{F}left{f(x)right} = int_{-infty}^infty f(x) e^{-2pi i sx} space dx$$



and these two theorems



$$mathscr{F}left{dfrac{d}{dx}f(x)right} = 2pi i sF(s)$$



$$mathscr{F}left{-2pi i xf(x)right} = dfrac{d}{ds}F(s)= F'(s)$$



one can derive the answer



$$begin{align*}mathscr{F}left{dfrac{d}{dx}left(xf(x)right)right} &= 2pi i smathscr{F}left{xf(x)right} \
\
&= - smathscr{F}left{-2pi i xf(x)right} \
\
&= -sdfrac{d}{ds}F(s)\
\
&= -s F'(s)
end{align*}$$



Update to add a proof of the 2nd theorem
$$begin{align*}mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= int_{-infty}^infty {left[dfrac{d}{ds}F(s)right]e^{2pi i xs}}ds \
\
&= int_{-infty}^infty {lim_{Delta s to 0}{dfrac{F(s+Delta s) - F(s)}{Delta s}}e^{2pi i xs}}ds \
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s+Delta s)e^{2pi i xs}}ds -int_{-infty}^infty {F(s)e^{2pi i xs}}dsright]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s')e^{2pi i x(s'-Delta s)}}ds' -f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[e^{-2pi i xDelta s}int_{-infty}^infty {F(s')e^{2pi i xs'}}ds'-f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i xDelta s}f(x)-f(x)}{Delta s}}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i x(0+Delta s)}-e^{-2pi i x0}}{Delta s}f(x)}\
\
&= left(dfrac{d}{ds}e^{-2pi i xs}right)biggr|_{s=0} space f(x)\
\
mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= -2pi i x f(x)\
\
dfrac{d}{ds}F(s) &= mathscr{F}left{-2pi i x f(x)right}\
\
end{align*}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thx, can you elaborate your 2nd theorem about $F'(s)$ pls?
    $endgroup$
    – kinder chen
    Jan 27 at 1:33










  • $begingroup$
    Well, it's the dual of the first theorem. There is a symmetry between the Fourier Transform and the Inverse Fourier Transform with the normalization convention I normally use. Although the symmetry isn't perfect as evinced by the negative sign, which pops up in duals of Fourier Transform theorems.
    $endgroup$
    – Andy Walls
    Jan 27 at 2:56
















3












$begingroup$

Using this definition of the Fourier Transform



$$F(s) = mathscr{F}left{f(x)right} = int_{-infty}^infty f(x) e^{-2pi i sx} space dx$$



and these two theorems



$$mathscr{F}left{dfrac{d}{dx}f(x)right} = 2pi i sF(s)$$



$$mathscr{F}left{-2pi i xf(x)right} = dfrac{d}{ds}F(s)= F'(s)$$



one can derive the answer



$$begin{align*}mathscr{F}left{dfrac{d}{dx}left(xf(x)right)right} &= 2pi i smathscr{F}left{xf(x)right} \
\
&= - smathscr{F}left{-2pi i xf(x)right} \
\
&= -sdfrac{d}{ds}F(s)\
\
&= -s F'(s)
end{align*}$$



Update to add a proof of the 2nd theorem
$$begin{align*}mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= int_{-infty}^infty {left[dfrac{d}{ds}F(s)right]e^{2pi i xs}}ds \
\
&= int_{-infty}^infty {lim_{Delta s to 0}{dfrac{F(s+Delta s) - F(s)}{Delta s}}e^{2pi i xs}}ds \
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s+Delta s)e^{2pi i xs}}ds -int_{-infty}^infty {F(s)e^{2pi i xs}}dsright]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s')e^{2pi i x(s'-Delta s)}}ds' -f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[e^{-2pi i xDelta s}int_{-infty}^infty {F(s')e^{2pi i xs'}}ds'-f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i xDelta s}f(x)-f(x)}{Delta s}}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i x(0+Delta s)}-e^{-2pi i x0}}{Delta s}f(x)}\
\
&= left(dfrac{d}{ds}e^{-2pi i xs}right)biggr|_{s=0} space f(x)\
\
mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= -2pi i x f(x)\
\
dfrac{d}{ds}F(s) &= mathscr{F}left{-2pi i x f(x)right}\
\
end{align*}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thx, can you elaborate your 2nd theorem about $F'(s)$ pls?
    $endgroup$
    – kinder chen
    Jan 27 at 1:33










  • $begingroup$
    Well, it's the dual of the first theorem. There is a symmetry between the Fourier Transform and the Inverse Fourier Transform with the normalization convention I normally use. Although the symmetry isn't perfect as evinced by the negative sign, which pops up in duals of Fourier Transform theorems.
    $endgroup$
    – Andy Walls
    Jan 27 at 2:56














3












3








3





$begingroup$

Using this definition of the Fourier Transform



$$F(s) = mathscr{F}left{f(x)right} = int_{-infty}^infty f(x) e^{-2pi i sx} space dx$$



and these two theorems



$$mathscr{F}left{dfrac{d}{dx}f(x)right} = 2pi i sF(s)$$



$$mathscr{F}left{-2pi i xf(x)right} = dfrac{d}{ds}F(s)= F'(s)$$



one can derive the answer



$$begin{align*}mathscr{F}left{dfrac{d}{dx}left(xf(x)right)right} &= 2pi i smathscr{F}left{xf(x)right} \
\
&= - smathscr{F}left{-2pi i xf(x)right} \
\
&= -sdfrac{d}{ds}F(s)\
\
&= -s F'(s)
end{align*}$$



Update to add a proof of the 2nd theorem
$$begin{align*}mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= int_{-infty}^infty {left[dfrac{d}{ds}F(s)right]e^{2pi i xs}}ds \
\
&= int_{-infty}^infty {lim_{Delta s to 0}{dfrac{F(s+Delta s) - F(s)}{Delta s}}e^{2pi i xs}}ds \
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s+Delta s)e^{2pi i xs}}ds -int_{-infty}^infty {F(s)e^{2pi i xs}}dsright]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s')e^{2pi i x(s'-Delta s)}}ds' -f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[e^{-2pi i xDelta s}int_{-infty}^infty {F(s')e^{2pi i xs'}}ds'-f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i xDelta s}f(x)-f(x)}{Delta s}}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i x(0+Delta s)}-e^{-2pi i x0}}{Delta s}f(x)}\
\
&= left(dfrac{d}{ds}e^{-2pi i xs}right)biggr|_{s=0} space f(x)\
\
mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= -2pi i x f(x)\
\
dfrac{d}{ds}F(s) &= mathscr{F}left{-2pi i x f(x)right}\
\
end{align*}$$






share|cite|improve this answer











$endgroup$



Using this definition of the Fourier Transform



$$F(s) = mathscr{F}left{f(x)right} = int_{-infty}^infty f(x) e^{-2pi i sx} space dx$$



and these two theorems



$$mathscr{F}left{dfrac{d}{dx}f(x)right} = 2pi i sF(s)$$



$$mathscr{F}left{-2pi i xf(x)right} = dfrac{d}{ds}F(s)= F'(s)$$



one can derive the answer



$$begin{align*}mathscr{F}left{dfrac{d}{dx}left(xf(x)right)right} &= 2pi i smathscr{F}left{xf(x)right} \
\
&= - smathscr{F}left{-2pi i xf(x)right} \
\
&= -sdfrac{d}{ds}F(s)\
\
&= -s F'(s)
end{align*}$$



Update to add a proof of the 2nd theorem
$$begin{align*}mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= int_{-infty}^infty {left[dfrac{d}{ds}F(s)right]e^{2pi i xs}}ds \
\
&= int_{-infty}^infty {lim_{Delta s to 0}{dfrac{F(s+Delta s) - F(s)}{Delta s}}e^{2pi i xs}}ds \
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s+Delta s)e^{2pi i xs}}ds -int_{-infty}^infty {F(s)e^{2pi i xs}}dsright]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[int_{-infty}^infty {F(s')e^{2pi i x(s'-Delta s)}}ds' -f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{1}{Delta s}left[e^{-2pi i xDelta s}int_{-infty}^infty {F(s')e^{2pi i xs'}}ds'-f(x)right]}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i xDelta s}f(x)-f(x)}{Delta s}}\
\
&= lim_{Delta s to 0}{dfrac{e^{-2pi i x(0+Delta s)}-e^{-2pi i x0}}{Delta s}f(x)}\
\
&= left(dfrac{d}{ds}e^{-2pi i xs}right)biggr|_{s=0} space f(x)\
\
mathscr{F}^{-1}left{dfrac{d}{ds}F(s)right} &= -2pi i x f(x)\
\
dfrac{d}{ds}F(s) &= mathscr{F}left{-2pi i x f(x)right}\
\
end{align*}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 27 at 17:29

























answered Jan 26 at 20:33









Andy WallsAndy Walls

1,764139




1,764139












  • $begingroup$
    Thx, can you elaborate your 2nd theorem about $F'(s)$ pls?
    $endgroup$
    – kinder chen
    Jan 27 at 1:33










  • $begingroup$
    Well, it's the dual of the first theorem. There is a symmetry between the Fourier Transform and the Inverse Fourier Transform with the normalization convention I normally use. Although the symmetry isn't perfect as evinced by the negative sign, which pops up in duals of Fourier Transform theorems.
    $endgroup$
    – Andy Walls
    Jan 27 at 2:56


















  • $begingroup$
    Thx, can you elaborate your 2nd theorem about $F'(s)$ pls?
    $endgroup$
    – kinder chen
    Jan 27 at 1:33










  • $begingroup$
    Well, it's the dual of the first theorem. There is a symmetry between the Fourier Transform and the Inverse Fourier Transform with the normalization convention I normally use. Although the symmetry isn't perfect as evinced by the negative sign, which pops up in duals of Fourier Transform theorems.
    $endgroup$
    – Andy Walls
    Jan 27 at 2:56
















$begingroup$
Thx, can you elaborate your 2nd theorem about $F'(s)$ pls?
$endgroup$
– kinder chen
Jan 27 at 1:33




$begingroup$
Thx, can you elaborate your 2nd theorem about $F'(s)$ pls?
$endgroup$
– kinder chen
Jan 27 at 1:33












$begingroup$
Well, it's the dual of the first theorem. There is a symmetry between the Fourier Transform and the Inverse Fourier Transform with the normalization convention I normally use. Although the symmetry isn't perfect as evinced by the negative sign, which pops up in duals of Fourier Transform theorems.
$endgroup$
– Andy Walls
Jan 27 at 2:56




$begingroup$
Well, it's the dual of the first theorem. There is a symmetry between the Fourier Transform and the Inverse Fourier Transform with the normalization convention I normally use. Although the symmetry isn't perfect as evinced by the negative sign, which pops up in duals of Fourier Transform theorems.
$endgroup$
– Andy Walls
Jan 27 at 2:56


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086544%2ffourier-transform-of-derivative-of-xfx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith