$f(x)$ from $f(g(x))$
$begingroup$
Is it always possible to find $f(x)$ if the composite function $h(x) = f(g(x))$ and $g(x)$ are given?
In other words, can there be any cases where, for given $h(x)$, we can not express it in an explicit function of $g(x)$?
functions special-functions function-and-relation-composition
$endgroup$
add a comment |
$begingroup$
Is it always possible to find $f(x)$ if the composite function $h(x) = f(g(x))$ and $g(x)$ are given?
In other words, can there be any cases where, for given $h(x)$, we can not express it in an explicit function of $g(x)$?
functions special-functions function-and-relation-composition
$endgroup$
$begingroup$
I believe we can find candidates but not the exact function
$endgroup$
– iggykimi
Jan 27 at 19:07
$begingroup$
h(x)=x, g(x)=x^2.. you can't find the negative numbers there
$endgroup$
– Shaq
Jan 27 at 19:09
add a comment |
$begingroup$
Is it always possible to find $f(x)$ if the composite function $h(x) = f(g(x))$ and $g(x)$ are given?
In other words, can there be any cases where, for given $h(x)$, we can not express it in an explicit function of $g(x)$?
functions special-functions function-and-relation-composition
$endgroup$
Is it always possible to find $f(x)$ if the composite function $h(x) = f(g(x))$ and $g(x)$ are given?
In other words, can there be any cases where, for given $h(x)$, we can not express it in an explicit function of $g(x)$?
functions special-functions function-and-relation-composition
functions special-functions function-and-relation-composition
asked Jan 27 at 18:59


JoyJoy
335
335
$begingroup$
I believe we can find candidates but not the exact function
$endgroup$
– iggykimi
Jan 27 at 19:07
$begingroup$
h(x)=x, g(x)=x^2.. you can't find the negative numbers there
$endgroup$
– Shaq
Jan 27 at 19:09
add a comment |
$begingroup$
I believe we can find candidates but not the exact function
$endgroup$
– iggykimi
Jan 27 at 19:07
$begingroup$
h(x)=x, g(x)=x^2.. you can't find the negative numbers there
$endgroup$
– Shaq
Jan 27 at 19:09
$begingroup$
I believe we can find candidates but not the exact function
$endgroup$
– iggykimi
Jan 27 at 19:07
$begingroup$
I believe we can find candidates but not the exact function
$endgroup$
– iggykimi
Jan 27 at 19:07
$begingroup$
h(x)=x, g(x)=x^2.. you can't find the negative numbers there
$endgroup$
– Shaq
Jan 27 at 19:09
$begingroup$
h(x)=x, g(x)=x^2.. you can't find the negative numbers there
$endgroup$
– Shaq
Jan 27 at 19:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that if $g(x)$ is invertible then
$$f(x) = h(g^{-1}(x)).$$
What happens if $g(x)$ is not invertible. Consider, e.g., $f(x)=x$ and $g(x) = 1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089978%2ffx-from-fgx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that if $g(x)$ is invertible then
$$f(x) = h(g^{-1}(x)).$$
What happens if $g(x)$ is not invertible. Consider, e.g., $f(x)=x$ and $g(x) = 1$.
$endgroup$
add a comment |
$begingroup$
Note that if $g(x)$ is invertible then
$$f(x) = h(g^{-1}(x)).$$
What happens if $g(x)$ is not invertible. Consider, e.g., $f(x)=x$ and $g(x) = 1$.
$endgroup$
add a comment |
$begingroup$
Note that if $g(x)$ is invertible then
$$f(x) = h(g^{-1}(x)).$$
What happens if $g(x)$ is not invertible. Consider, e.g., $f(x)=x$ and $g(x) = 1$.
$endgroup$
Note that if $g(x)$ is invertible then
$$f(x) = h(g^{-1}(x)).$$
What happens if $g(x)$ is not invertible. Consider, e.g., $f(x)=x$ and $g(x) = 1$.
answered Jan 27 at 19:07
Math LoverMath Lover
14.1k31437
14.1k31437
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089978%2ffx-from-fgx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I believe we can find candidates but not the exact function
$endgroup$
– iggykimi
Jan 27 at 19:07
$begingroup$
h(x)=x, g(x)=x^2.. you can't find the negative numbers there
$endgroup$
– Shaq
Jan 27 at 19:09