How to find the value this sum converges to?$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $
$begingroup$
How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$
I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.
real-analysis summation
$endgroup$
add a comment |
$begingroup$
How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$
I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.
real-analysis summation
$endgroup$
$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01
add a comment |
$begingroup$
How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$
I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.
real-analysis summation
$endgroup$
How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$
I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.
real-analysis summation
real-analysis summation
asked Jan 24 at 22:59


iggykimiiggykimi
30710
30710
$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01
add a comment |
$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01
$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01
$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.
$endgroup$
add a comment |
$begingroup$
Proceeding on the partial fraction decomposition you already got
$$
eqalign{
& S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
& = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
& = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
$$
Since
$$
sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
$$
then
$$
eqalign{
& S = mathop {lim }limits_{N, to ,infty } left( matrix{
{1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
+ psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
& = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
& = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
& = 2ln 2 - {7 over 6} cr}
$$
$endgroup$
add a comment |
$begingroup$
Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.
Let
$$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$
For the first of the sums appearing to the right in ($*$), observe that
$$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
The sum may now be rewritten as
begin{align}
sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
&= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
&= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
&= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
&= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
&= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
&= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
&= -1 + 2 int_0^1 frac{dy}{1 + y}\
&= -1 + 2 ln 2.
end{align}
Explanation
(1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.
(2) Summing of a geometric series.
(3) Change of variable $u = xy^2$ is made.
(4) Integration by parts has been used.
The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
$$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
Thus
$$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
or
$$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$
$endgroup$
$begingroup$
another approach to confirm the correctness of my answer: thanks.
$endgroup$
– G Cab
Jan 26 at 19:26
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086481%2fhow-to-find-the-value-this-sum-converges-to-sum-n-2-infty-fracn1n2n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.
$endgroup$
add a comment |
$begingroup$
Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.
$endgroup$
add a comment |
$begingroup$
Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.
$endgroup$
Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.
answered Jan 24 at 23:28


Kavi Rama MurthyKavi Rama Murthy
68k53068
68k53068
add a comment |
add a comment |
$begingroup$
Proceeding on the partial fraction decomposition you already got
$$
eqalign{
& S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
& = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
& = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
$$
Since
$$
sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
$$
then
$$
eqalign{
& S = mathop {lim }limits_{N, to ,infty } left( matrix{
{1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
+ psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
& = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
& = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
& = 2ln 2 - {7 over 6} cr}
$$
$endgroup$
add a comment |
$begingroup$
Proceeding on the partial fraction decomposition you already got
$$
eqalign{
& S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
& = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
& = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
$$
Since
$$
sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
$$
then
$$
eqalign{
& S = mathop {lim }limits_{N, to ,infty } left( matrix{
{1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
+ psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
& = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
& = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
& = 2ln 2 - {7 over 6} cr}
$$
$endgroup$
add a comment |
$begingroup$
Proceeding on the partial fraction decomposition you already got
$$
eqalign{
& S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
& = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
& = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
$$
Since
$$
sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
$$
then
$$
eqalign{
& S = mathop {lim }limits_{N, to ,infty } left( matrix{
{1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
+ psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
& = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
& = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
& = 2ln 2 - {7 over 6} cr}
$$
$endgroup$
Proceeding on the partial fraction decomposition you already got
$$
eqalign{
& S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
& = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
& = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
$$
Since
$$
sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
$$
then
$$
eqalign{
& S = mathop {lim }limits_{N, to ,infty } left( matrix{
{1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
+ psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
& = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
& = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
& = 2ln 2 - {7 over 6} cr}
$$
answered Jan 24 at 23:46
G CabG Cab
20.2k31340
20.2k31340
add a comment |
add a comment |
$begingroup$
Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.
Let
$$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$
For the first of the sums appearing to the right in ($*$), observe that
$$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
The sum may now be rewritten as
begin{align}
sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
&= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
&= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
&= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
&= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
&= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
&= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
&= -1 + 2 int_0^1 frac{dy}{1 + y}\
&= -1 + 2 ln 2.
end{align}
Explanation
(1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.
(2) Summing of a geometric series.
(3) Change of variable $u = xy^2$ is made.
(4) Integration by parts has been used.
The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
$$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
Thus
$$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
or
$$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$
$endgroup$
$begingroup$
another approach to confirm the correctness of my answer: thanks.
$endgroup$
– G Cab
Jan 26 at 19:26
add a comment |
$begingroup$
Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.
Let
$$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$
For the first of the sums appearing to the right in ($*$), observe that
$$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
The sum may now be rewritten as
begin{align}
sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
&= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
&= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
&= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
&= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
&= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
&= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
&= -1 + 2 int_0^1 frac{dy}{1 + y}\
&= -1 + 2 ln 2.
end{align}
Explanation
(1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.
(2) Summing of a geometric series.
(3) Change of variable $u = xy^2$ is made.
(4) Integration by parts has been used.
The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
$$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
Thus
$$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
or
$$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$
$endgroup$
$begingroup$
another approach to confirm the correctness of my answer: thanks.
$endgroup$
– G Cab
Jan 26 at 19:26
add a comment |
$begingroup$
Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.
Let
$$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$
For the first of the sums appearing to the right in ($*$), observe that
$$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
The sum may now be rewritten as
begin{align}
sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
&= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
&= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
&= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
&= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
&= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
&= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
&= -1 + 2 int_0^1 frac{dy}{1 + y}\
&= -1 + 2 ln 2.
end{align}
Explanation
(1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.
(2) Summing of a geometric series.
(3) Change of variable $u = xy^2$ is made.
(4) Integration by parts has been used.
The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
$$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
Thus
$$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
or
$$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$
$endgroup$
Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.
Let
$$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$
For the first of the sums appearing to the right in ($*$), observe that
$$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
The sum may now be rewritten as
begin{align}
sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
&= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
&= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
&= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
&= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
&= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
&= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
&= -1 + 2 int_0^1 frac{dy}{1 + y}\
&= -1 + 2 ln 2.
end{align}
Explanation
(1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.
(2) Summing of a geometric series.
(3) Change of variable $u = xy^2$ is made.
(4) Integration by parts has been used.
The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
$$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
Thus
$$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
or
$$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$
answered Jan 25 at 5:41


omegadotomegadot
6,4072829
6,4072829
$begingroup$
another approach to confirm the correctness of my answer: thanks.
$endgroup$
– G Cab
Jan 26 at 19:26
add a comment |
$begingroup$
another approach to confirm the correctness of my answer: thanks.
$endgroup$
– G Cab
Jan 26 at 19:26
$begingroup$
another approach to confirm the correctness of my answer: thanks.
$endgroup$
– G Cab
Jan 26 at 19:26
$begingroup$
another approach to confirm the correctness of my answer: thanks.
$endgroup$
– G Cab
Jan 26 at 19:26
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086481%2fhow-to-find-the-value-this-sum-converges-to-sum-n-2-infty-fracn1n2n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01