How to find the value this sum converges to?$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $












2












$begingroup$


How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$



I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.










share|cite|improve this question









$endgroup$












  • $begingroup$
    You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
    $endgroup$
    – DonAntonio
    Jan 24 at 23:01


















2












$begingroup$


How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$



I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.










share|cite|improve this question









$endgroup$












  • $begingroup$
    You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
    $endgroup$
    – DonAntonio
    Jan 24 at 23:01
















2












2








2


1



$begingroup$


How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$



I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.










share|cite|improve this question









$endgroup$




How to find the value this sum converges to?$$sum_{n=2}^{infty}frac{n+1}{n(2n-1)(2n+1)} $$



I've tried separating it like
$$sum_{n=2}^{infty}frac{1/2}{(2n+1)}+frac{3/2}{(2n-1)}-frac{1}{n}$$
and writing some terms and I get
$$1/6·(1+1/2+...+1/6n+3)+1/2·(1/3+1+1/2+...+1/6n-3)-(1+1/2+...1/n)$$
but I don't know how to end summing it all! Any hint!
FYI I haven't learnt integration and differentation.







real-analysis summation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 24 at 22:59









iggykimiiggykimi

30710




30710












  • $begingroup$
    You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
    $endgroup$
    – DonAntonio
    Jan 24 at 23:01




















  • $begingroup$
    You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
    $endgroup$
    – DonAntonio
    Jan 24 at 23:01


















$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01






$begingroup$
You divided your convergent series into three divergent ones. Doesn't look very promising...unless you can produce a telescopic series of something like that (hint)
$endgroup$
– DonAntonio
Jan 24 at 23:01












3 Answers
3






active

oldest

votes


















2












$begingroup$

Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Proceeding on the partial fraction decomposition you already got
    $$
    eqalign{
    & S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
    & = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
    & = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
    & = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
    $$



    Since
    $$
    sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
    $$

    then
    $$
    eqalign{
    & S = mathop {lim }limits_{N, to ,infty } left( matrix{
    {1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
    + psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
    & = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
    & = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
    & = 2ln 2 - {7 over 6} cr}
    $$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.



      Let
      $$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$



      For the first of the sums appearing to the right in ($*$), observe that
      $$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
      The sum may now be rewritten as
      begin{align}
      sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
      &= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
      &= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
      &= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
      &= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
      &= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
      &= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
      &= -1 + 2 int_0^1 frac{dy}{1 + y}\
      &= -1 + 2 ln 2.
      end{align}



      Explanation



      (1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.



      (2) Summing of a geometric series.



      (3) Change of variable $u = xy^2$ is made.



      (4) Integration by parts has been used.



      The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
      $$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
      Thus
      $$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
      or
      $$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        another approach to confirm the correctness of my answer: thanks.
        $endgroup$
        – G Cab
        Jan 26 at 19:26











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086481%2fhow-to-find-the-value-this-sum-converges-to-sum-n-2-infty-fracn1n2n%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.






          share|cite|improve this answer









          $endgroup$



          Hint: $frac {n+1} {n(2n-1)(2n+1)}=frac 3 4 frac 1 {n(2n-1)} -frac 1 4 frac 1 {n(2n+1)}$. So what is left is to find the sums $sum frac 1 {n(2n-1)}$ and $sum frac 1 {n(2n+1)}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 24 at 23:28









          Kavi Rama MurthyKavi Rama Murthy

          68k53068




          68k53068























              2












              $begingroup$

              Proceeding on the partial fraction decomposition you already got
              $$
              eqalign{
              & S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
              & = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
              & = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
              & = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
              $$



              Since
              $$
              sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
              $$

              then
              $$
              eqalign{
              & S = mathop {lim }limits_{N, to ,infty } left( matrix{
              {1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
              + psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
              & = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
              & = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
              & = 2ln 2 - {7 over 6} cr}
              $$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Proceeding on the partial fraction decomposition you already got
                $$
                eqalign{
                & S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
                & = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
                & = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
                & = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
                $$



                Since
                $$
                sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
                $$

                then
                $$
                eqalign{
                & S = mathop {lim }limits_{N, to ,infty } left( matrix{
                {1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
                + psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
                & = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
                & = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
                & = 2ln 2 - {7 over 6} cr}
                $$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Proceeding on the partial fraction decomposition you already got
                  $$
                  eqalign{
                  & S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
                  & = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
                  & = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
                  & = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
                  $$



                  Since
                  $$
                  sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
                  $$

                  then
                  $$
                  eqalign{
                  & S = mathop {lim }limits_{N, to ,infty } left( matrix{
                  {1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
                  + psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
                  & = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
                  & = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
                  & = 2ln 2 - {7 over 6} cr}
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  Proceeding on the partial fraction decomposition you already got
                  $$
                  eqalign{
                  & S = sumlimits_{2, le ,n} {{{n + 1} over {nleft( {2n - 1} right)left( {2n + 1} right)}}} = cr
                  & = sumlimits_{2, le ,n} {{{1/2} over {left( {2n + 1} right)}} + {{3/2} over {left( {2n - 1} right)}} + {1 over n}} = cr
                  & = sumlimits_{0, le ,n} {{{1/2} over {left( {2n + 5} right)}} + {{3/2} over {left( {2n + 3} right)}} - {1 over {n + 2}}} = cr
                  & = sumlimits_{0, le ,n} {{{1/4} over {left( {n + 5/2} right)}} + {{3/4} over {left( {n + 3/2} right)}} - {1 over {n + 2}}} cr}
                  $$



                  Since
                  $$
                  sumnolimits_{n = 0}^N {{1 over {n + a}}} = sumnolimits_{n = a}^{N + a} {{1 over n}} = psi (N + a) - psi (a)
                  $$

                  then
                  $$
                  eqalign{
                  & S = mathop {lim }limits_{N, to ,infty } left( matrix{
                  {1 over 4}psi (N + 5/2) + {3 over 4}psi (N + 3/2) - psi (N + 2) + hfill cr
                  + psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) hfill cr} right) = cr
                  & = psi (2) - {1 over 4}psi (5/2) - {3 over 4}psi (3/2) = cr
                  & = 1 - gamma - {1 over 4}left( {{8 over 3} - 2ln 2 - gamma } right) - {3 over 4}left( {2 - 2ln 2 - gamma } right) = cr
                  & = 2ln 2 - {7 over 6} cr}
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 24 at 23:46









                  G CabG Cab

                  20.2k31340




                  20.2k31340























                      1












                      $begingroup$

                      Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.



                      Let
                      $$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$



                      For the first of the sums appearing to the right in ($*$), observe that
                      $$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
                      The sum may now be rewritten as
                      begin{align}
                      sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
                      &= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
                      &= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
                      &= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
                      &= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
                      &= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
                      &= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
                      &= -1 + 2 int_0^1 frac{dy}{1 + y}\
                      &= -1 + 2 ln 2.
                      end{align}



                      Explanation



                      (1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.



                      (2) Summing of a geometric series.



                      (3) Change of variable $u = xy^2$ is made.



                      (4) Integration by parts has been used.



                      The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
                      $$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
                      Thus
                      $$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
                      or
                      $$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        another approach to confirm the correctness of my answer: thanks.
                        $endgroup$
                        – G Cab
                        Jan 26 at 19:26
















                      1












                      $begingroup$

                      Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.



                      Let
                      $$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$



                      For the first of the sums appearing to the right in ($*$), observe that
                      $$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
                      The sum may now be rewritten as
                      begin{align}
                      sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
                      &= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
                      &= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
                      &= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
                      &= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
                      &= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
                      &= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
                      &= -1 + 2 int_0^1 frac{dy}{1 + y}\
                      &= -1 + 2 ln 2.
                      end{align}



                      Explanation



                      (1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.



                      (2) Summing of a geometric series.



                      (3) Change of variable $u = xy^2$ is made.



                      (4) Integration by parts has been used.



                      The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
                      $$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
                      Thus
                      $$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
                      or
                      $$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        another approach to confirm the correctness of my answer: thanks.
                        $endgroup$
                        – G Cab
                        Jan 26 at 19:26














                      1












                      1








                      1





                      $begingroup$

                      Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.



                      Let
                      $$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$



                      For the first of the sums appearing to the right in ($*$), observe that
                      $$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
                      The sum may now be rewritten as
                      begin{align}
                      sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
                      &= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
                      &= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
                      &= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
                      &= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
                      &= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
                      &= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
                      &= -1 + 2 int_0^1 frac{dy}{1 + y}\
                      &= -1 + 2 ln 2.
                      end{align}



                      Explanation



                      (1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.



                      (2) Summing of a geometric series.



                      (3) Change of variable $u = xy^2$ is made.



                      (4) Integration by parts has been used.



                      The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
                      $$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
                      Thus
                      $$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
                      or
                      $$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$






                      share|cite|improve this answer









                      $endgroup$



                      Here is a way to find those two sums @Kavi Rama Murthy refers to in his answer. They are found by first converting them to double integrals.



                      Let
                      $$S = sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = frac{3}{4} sum_{n = 2}^infty frac{1}{n (2n - 1)} - frac{1}{4} sum_{n = 1}^infty frac{1}{n(2n + 1)} + frac{1}{12}. qquad (*)$$



                      For the first of the sums appearing to the right in ($*$), observe that
                      $$frac{1}{n} = int_0^1 x^{n - 1} , dx quad text{and} quad frac{1}{2n - 1} = int_0^1 y^{2n - 2} , dy.$$
                      The sum may now be rewritten as
                      begin{align}
                      sum_{n = 2}^infty frac{1}{n(2n - 1)} &= sum_{n = 2}^infty int_0^1 int_0^1 x^{n - 1} y^{2n - 2} , dx , dy\
                      &= int_0^1 int_0^1 frac{1}{xy^2} sum_{n = 2}^infty (xy^2)^n , dx ,dy tag1\
                      &= int_0^1 int_0^1 frac{1}{xy^2} cdot frac{(xy^2)^2}{1 - xy^2} , dx , dy tag2\
                      &= int_0^1 frac{1}{y^2} int_0^{y^2} frac{u}{1 - u} , du , dy tag3\
                      &= -int_0^1 frac{1}{y^2} int_0^{y^2} left (1 - frac{1}{1 - u} right ) , du , dy\
                      &= -int_0^1 left (1 + frac{ln (1 - y^2)}{y^2} right ) , dy\
                      &= -1 + 2 int_0^1 frac{1 - y}{1 - y^2} , dy tag4\
                      &= -1 + 2 int_0^1 frac{dy}{1 + y}\
                      &= -1 + 2 ln 2.
                      end{align}



                      Explanation



                      (1) Interchange of the sum and integral signs is justified by the dominated convergence theorem.



                      (2) Summing of a geometric series.



                      (3) Change of variable $u = xy^2$ is made.



                      (4) Integration by parts has been used.



                      The second of the sums appearing in ($*$) can be found in a similar manner (see here). The result is:
                      $$sum_{n = 1}^infty frac{1}{n(2n + 1)} = 2 - 2ln 2.$$
                      Thus
                      $$S = frac{3}{4} (2 ln 2 - 1) - frac{1}{4} (2 - 2 ln 2) + frac{1}{12},$$
                      or
                      $$sum_{n = 2}^infty frac{n + 1}{n(2n - 1)(2n + 1)} = 2 ln 2 - frac{7}{6}.$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 25 at 5:41









                      omegadotomegadot

                      6,4072829




                      6,4072829












                      • $begingroup$
                        another approach to confirm the correctness of my answer: thanks.
                        $endgroup$
                        – G Cab
                        Jan 26 at 19:26


















                      • $begingroup$
                        another approach to confirm the correctness of my answer: thanks.
                        $endgroup$
                        – G Cab
                        Jan 26 at 19:26
















                      $begingroup$
                      another approach to confirm the correctness of my answer: thanks.
                      $endgroup$
                      – G Cab
                      Jan 26 at 19:26




                      $begingroup$
                      another approach to confirm the correctness of my answer: thanks.
                      $endgroup$
                      – G Cab
                      Jan 26 at 19:26


















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086481%2fhow-to-find-the-value-this-sum-converges-to-sum-n-2-infty-fracn1n2n%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith