How to prove the set of all symmetric matrices with eigenvalues in $(0,2)$ is connected?












1












$begingroup$



Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.




Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.



I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$



Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.



I hope my doubts are clear to you.



Any help is appreciated. Thank you.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.




    Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.



    I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$



    Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.



    I hope my doubts are clear to you.



    Any help is appreciated. Thank you.










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$



      Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.




      Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.



      I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$



      Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.



      I hope my doubts are clear to you.



      Any help is appreciated. Thank you.










      share|cite|improve this question











      $endgroup$





      Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.




      Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.



      I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$



      Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.



      I hope my doubts are clear to you.



      Any help is appreciated. Thank you.







      general-topology matrices connectedness symmetric-matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 22 at 10:08









      José Carlos Santos

      166k22132235




      166k22132235










      asked Jan 22 at 9:56









      nurun neshanurun nesha

      1,0362623




      1,0362623






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
            $endgroup$
            – nurun nesha
            Jan 22 at 10:53






          • 1




            $begingroup$
            Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
            $endgroup$
            – José Carlos Santos
            Jan 22 at 11:01





















          0












          $begingroup$

          We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).



          $textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).



          $textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.



          Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$



          $textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.



          $textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.



          Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.



            Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
            $$
            |tA+(1-t)B|_2
            leq t|A|_2+(1-t)|B|_2
            < 2t+2(1-t)=2.
            $$

            Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082944%2fhow-to-prove-the-set-of-all-symmetric-matrices-with-eigenvalues-in-0-2-is-co%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
                $endgroup$
                – nurun nesha
                Jan 22 at 10:53






              • 1




                $begingroup$
                Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
                $endgroup$
                – José Carlos Santos
                Jan 22 at 11:01


















              3












              $begingroup$

              The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
                $endgroup$
                – nurun nesha
                Jan 22 at 10:53






              • 1




                $begingroup$
                Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
                $endgroup$
                – José Carlos Santos
                Jan 22 at 11:01
















              3












              3








              3





              $begingroup$

              The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.






              share|cite|improve this answer









              $endgroup$



              The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 22 at 10:07









              José Carlos SantosJosé Carlos Santos

              166k22132235




              166k22132235












              • $begingroup$
                I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
                $endgroup$
                – nurun nesha
                Jan 22 at 10:53






              • 1




                $begingroup$
                Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
                $endgroup$
                – José Carlos Santos
                Jan 22 at 11:01




















              • $begingroup$
                I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
                $endgroup$
                – nurun nesha
                Jan 22 at 10:53






              • 1




                $begingroup$
                Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
                $endgroup$
                – José Carlos Santos
                Jan 22 at 11:01


















              $begingroup$
              I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
              $endgroup$
              – nurun nesha
              Jan 22 at 10:53




              $begingroup$
              I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
              $endgroup$
              – nurun nesha
              Jan 22 at 10:53




              1




              1




              $begingroup$
              Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
              $endgroup$
              – José Carlos Santos
              Jan 22 at 11:01






              $begingroup$
              Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
              $endgroup$
              – José Carlos Santos
              Jan 22 at 11:01













              0












              $begingroup$

              We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).



              $textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).



              $textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.



              Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$



              $textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.



              $textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.



              Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).



                $textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).



                $textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.



                Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$



                $textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.



                $textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.



                Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).



                  $textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).



                  $textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.



                  Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$



                  $textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.



                  $textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.



                  Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.






                  share|cite|improve this answer









                  $endgroup$



                  We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).



                  $textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).



                  $textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.



                  Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$



                  $textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.



                  $textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.



                  Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 28 at 20:19









                  loup blancloup blanc

                  23.6k21851




                  23.6k21851























                      0












                      $begingroup$

                      One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.



                      Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
                      $$
                      |tA+(1-t)B|_2
                      leq t|A|_2+(1-t)|B|_2
                      < 2t+2(1-t)=2.
                      $$

                      Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.



                        Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
                        $$
                        |tA+(1-t)B|_2
                        leq t|A|_2+(1-t)|B|_2
                        < 2t+2(1-t)=2.
                        $$

                        Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.



                          Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
                          $$
                          |tA+(1-t)B|_2
                          leq t|A|_2+(1-t)|B|_2
                          < 2t+2(1-t)=2.
                          $$

                          Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.






                          share|cite|improve this answer









                          $endgroup$



                          One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.



                          Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
                          $$
                          |tA+(1-t)B|_2
                          leq t|A|_2+(1-t)|B|_2
                          < 2t+2(1-t)=2.
                          $$

                          Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 30 at 11:45









                          user1551user1551

                          73.5k566129




                          73.5k566129






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082944%2fhow-to-prove-the-set-of-all-symmetric-matrices-with-eigenvalues-in-0-2-is-co%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                              Npm cannot find a required file even through it is in the searched directory