How to prove the set of all symmetric matrices with eigenvalues in $(0,2)$ is connected?
$begingroup$
Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.
Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.
I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$
Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.
I hope my doubts are clear to you.
Any help is appreciated. Thank you.
general-topology matrices connectedness symmetric-matrices
$endgroup$
add a comment |
$begingroup$
Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.
Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.
I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$
Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.
I hope my doubts are clear to you.
Any help is appreciated. Thank you.
general-topology matrices connectedness symmetric-matrices
$endgroup$
add a comment |
$begingroup$
Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.
Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.
I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$
Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.
I hope my doubts are clear to you.
Any help is appreciated. Thank you.
general-topology matrices connectedness symmetric-matrices
$endgroup$
Prove that space $X$ of all symmetric matrices in $GL_2(mathbb R)$ with both the eigenvalues belonging to the interval $(0,2),$ with the topology inherited from $M_2(mathbb R) $ is connected.
Space of all symmetric matrices in $M_2(mathbb R)$ is path -connected.
I was not able to show why $det(lambda A+(1-lambda)B)neq 0$ where $lambda in (0,1)$ and $A,Bin GL_2(mathbb R), A=A^T,B=B^T.$
Also how to use the eigenvalues from $(0,2)$ to prove the connectedness.
I hope my doubts are clear to you.
Any help is appreciated. Thank you.
general-topology matrices connectedness symmetric-matrices
general-topology matrices connectedness symmetric-matrices
edited Jan 22 at 10:08


José Carlos Santos
166k22132235
166k22132235
asked Jan 22 at 9:56
nurun neshanurun nesha
1,0362623
1,0362623
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.
$endgroup$
$begingroup$
I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
$endgroup$
– nurun nesha
Jan 22 at 10:53
1
$begingroup$
Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
$endgroup$
– José Carlos Santos
Jan 22 at 11:01
add a comment |
$begingroup$
We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).
$textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).
$textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.
Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$
$textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.
$textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.
Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.
$endgroup$
add a comment |
$begingroup$
One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.
Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
$$
|tA+(1-t)B|_2
leq t|A|_2+(1-t)|B|_2
< 2t+2(1-t)=2.
$$
Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082944%2fhow-to-prove-the-set-of-all-symmetric-matrices-with-eigenvalues-in-0-2-is-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.
$endgroup$
$begingroup$
I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
$endgroup$
– nurun nesha
Jan 22 at 10:53
1
$begingroup$
Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
$endgroup$
– José Carlos Santos
Jan 22 at 11:01
add a comment |
$begingroup$
The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.
$endgroup$
$begingroup$
I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
$endgroup$
– nurun nesha
Jan 22 at 10:53
1
$begingroup$
Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
$endgroup$
– José Carlos Santos
Jan 22 at 11:01
add a comment |
$begingroup$
The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.
$endgroup$
The space $SO_2(mathbb{R})$ is connected. Now let$$Lambda=left{begin{bmatrix}lambda_1&0\0&lambda_2end{bmatrix},middle|,lambda_1,lambda_2in(0,2)right}.$$The set $Lambda$ is connected too. So, the range of the map$$begin{array}{ccc}SO_2(mathbb{R})timesLambda&longrightarrow&GL_2(mathbb{R})\(P,D)&mapsto&P^{-1}DPend{array}$$is connected too. But this range is $X$.
answered Jan 22 at 10:07


José Carlos SantosJosé Carlos Santos
166k22132235
166k22132235
$begingroup$
I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
$endgroup$
– nurun nesha
Jan 22 at 10:53
1
$begingroup$
Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
$endgroup$
– José Carlos Santos
Jan 22 at 11:01
add a comment |
$begingroup$
I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
$endgroup$
– nurun nesha
Jan 22 at 10:53
1
$begingroup$
Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
$endgroup$
– José Carlos Santos
Jan 22 at 11:01
$begingroup$
I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
$endgroup$
– nurun nesha
Jan 22 at 10:53
$begingroup$
I had another question too: whether $det(lambda A+(1-lambda ) B)$ equal to $0$ or not? where $lambda in (0,1)$ and $A,B$ are symmetric matrices with determinant non-zero.
$endgroup$
– nurun nesha
Jan 22 at 10:53
1
1
$begingroup$
Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
$endgroup$
– José Carlos Santos
Jan 22 at 11:01
$begingroup$
Yes, it can be $0$. Suppose that $A=operatorname{Id}$, the $B=-operatorname{Id}$, and that $lambda=frac12$.
$endgroup$
– José Carlos Santos
Jan 22 at 11:01
add a comment |
$begingroup$
We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).
$textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).
$textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.
Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$
$textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.
$textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.
Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.
$endgroup$
add a comment |
$begingroup$
We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).
$textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).
$textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.
Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$
$textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.
$textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.
Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.
$endgroup$
add a comment |
$begingroup$
We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).
$textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).
$textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.
Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$
$textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.
$textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.
Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.
$endgroup$
We can prove much more (in $S_n(mathbb{R})$ , the set of $ntimes n$ real symmetric matrices).
$textbf{Proposition 1}$. The set $Z_I={Ain S_n(mathbb{R});spectrum(A)subset I}$ is convex (where $I$ is some interval of $mathbb{R}$).
$textbf{Proof}$. We use the fact that if $Ain S_n(mathbb{R})$, then $sup_{||x||_2=1}x^TAx=sup(spectrum(A)),inf_{||x||_2=1}x^TAx=inf(spectrum(A))$.
Then $lambda x^TAx+(1-lambda)x^TBxin I$ when $A,Bin Z_I,||x||_2=1,lambdain [0,1]$. $square$
$textbf{Proposition 2}$. If $I=[a,b],a<b$, then $Z_I$ is homeomorphic to the compact ball $B_{n(n+1)/2}$.
$textbf{Proof}.$ $Z_I$ is also closed (the eigenvalues are continuous functions of the entries) and bounded ($||A||_2=sup_{lambdain spectrum(A)}(|lambda|))$.
Finally, $Z_I$ is convex compact and, therefore, homeomorphic to the compact ball in $mathbb{R}^k$, where $k$ is the number of degrees of freedom of $S_n(mathbb{R})$.
answered Jan 28 at 20:19


loup blancloup blanc
23.6k21851
23.6k21851
add a comment |
add a comment |
$begingroup$
One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.
Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
$$
|tA+(1-t)B|_2
leq t|A|_2+(1-t)|B|_2
< 2t+2(1-t)=2.
$$
Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.
$endgroup$
add a comment |
$begingroup$
One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.
Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
$$
|tA+(1-t)B|_2
leq t|A|_2+(1-t)|B|_2
< 2t+2(1-t)=2.
$$
Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.
$endgroup$
add a comment |
$begingroup$
One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.
Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
$$
|tA+(1-t)B|_2
leq t|A|_2+(1-t)|B|_2
< 2t+2(1-t)=2.
$$
Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.
$endgroup$
One-line proof: every $Ain X$ is path-connected to $I$ by the line segment ${tA+(1-t)I: 0leq tleq 1}subseteq X$.
Your original approach also works. Let $A,Bin X$ and $0leq tleq 1$. Then $A,B$ and in turn $tA+(1-t)B$ are positive definite and hence all eigenvalues of $tA+(1-t)B$ are positive. Also,
$$
|tA+(1-t)B|_2
leq t|A|_2+(1-t)|B|_2
< 2t+2(1-t)=2.
$$
Therefore all eigenvalues of $tA+(1-t)B$ lie inside the interval $(0,2)$. Consequently, $X$ is path-connected because ${tA+(1-t)B: 0leq tleq 1}subseteq X$ for any $A,Bin X$.
answered Jan 30 at 11:45


user1551user1551
73.5k566129
73.5k566129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082944%2fhow-to-prove-the-set-of-all-symmetric-matrices-with-eigenvalues-in-0-2-is-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown