If $f$ is $C^1$ s. t. $Vert f(x) - f(y) Vert geq k Vert x - y Vert$, then $f$ is a diffeomorphism of...












1












$begingroup$



Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.



(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.



(b) Prove that $f'$ is invertible.



(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.




My attempt.



(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.





(b) I dont know how to prove.





(c) I proved in a previous question that




if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.




Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.





Is (a) and (c) corrects? I need help with item (b).










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
    $endgroup$
    – Jordan Green
    Jan 23 at 21:33






  • 1




    $begingroup$
    For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
    $endgroup$
    – Jordan Green
    Jan 23 at 21:34










  • $begingroup$
    If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
    $endgroup$
    – Lucas Corrêa
    Jan 23 at 22:03


















1












$begingroup$



Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.



(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.



(b) Prove that $f'$ is invertible.



(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.




My attempt.



(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.





(b) I dont know how to prove.





(c) I proved in a previous question that




if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.




Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.





Is (a) and (c) corrects? I need help with item (b).










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
    $endgroup$
    – Jordan Green
    Jan 23 at 21:33






  • 1




    $begingroup$
    For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
    $endgroup$
    – Jordan Green
    Jan 23 at 21:34










  • $begingroup$
    If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
    $endgroup$
    – Lucas Corrêa
    Jan 23 at 22:03
















1












1








1


1



$begingroup$



Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.



(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.



(b) Prove that $f'$ is invertible.



(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.




My attempt.



(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.





(b) I dont know how to prove.





(c) I proved in a previous question that




if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.




Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.





Is (a) and (c) corrects? I need help with item (b).










share|cite|improve this question









$endgroup$





Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.



(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.



(b) Prove that $f'$ is invertible.



(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.




My attempt.



(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.





(b) I dont know how to prove.





(c) I proved in a previous question that




if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.




Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.





Is (a) and (c) corrects? I need help with item (b).







real-analysis derivatives inverse-function-theorem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 23 at 20:56









Lucas CorrêaLucas Corrêa

1,6231321




1,6231321








  • 2




    $begingroup$
    Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
    $endgroup$
    – Jordan Green
    Jan 23 at 21:33






  • 1




    $begingroup$
    For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
    $endgroup$
    – Jordan Green
    Jan 23 at 21:34










  • $begingroup$
    If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
    $endgroup$
    – Lucas Corrêa
    Jan 23 at 22:03
















  • 2




    $begingroup$
    Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
    $endgroup$
    – Jordan Green
    Jan 23 at 21:33






  • 1




    $begingroup$
    For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
    $endgroup$
    – Jordan Green
    Jan 23 at 21:34










  • $begingroup$
    If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
    $endgroup$
    – Lucas Corrêa
    Jan 23 at 22:03










2




2




$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33




$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33




1




1




$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34




$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34












$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03






$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03












1 Answer
1






active

oldest

votes


















1












$begingroup$

Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
$$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
Then:



$$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$



This leads to:
$$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
$$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$



So $Df(x_0)$ is invertible.



(b) and (c) are correct.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085065%2fif-f-is-c1-s-t-vert-fx-fy-vert-geq-k-vert-x-y-vert-then%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
    $$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
    Then:



    $$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$



    This leads to:
    $$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
    $$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$



    So $Df(x_0)$ is invertible.



    (b) and (c) are correct.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
      $$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
      Then:



      $$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$



      This leads to:
      $$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
      $$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$



      So $Df(x_0)$ is invertible.



      (b) and (c) are correct.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
        $$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
        Then:



        $$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$



        This leads to:
        $$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
        $$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$



        So $Df(x_0)$ is invertible.



        (b) and (c) are correct.






        share|cite|improve this answer









        $endgroup$



        Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
        $$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
        Then:



        $$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$



        This leads to:
        $$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
        $$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$



        So $Df(x_0)$ is invertible.



        (b) and (c) are correct.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 23 at 22:00









        Martin ErhardtMartin Erhardt

        21019




        21019






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085065%2fif-f-is-c1-s-t-vert-fx-fy-vert-geq-k-vert-x-y-vert-then%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith