If $f$ is $C^1$ s. t. $Vert f(x) - f(y) Vert geq k Vert x - y Vert$, then $f$ is a diffeomorphism of...
$begingroup$
Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.
(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.
(b) Prove that $f'$ is invertible.
(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.
My attempt.
(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.
(b) I dont know how to prove.
(c) I proved in a previous question that
if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.
Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.
Is (a) and (c) corrects? I need help with item (b).
real-analysis derivatives inverse-function-theorem
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.
(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.
(b) Prove that $f'$ is invertible.
(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.
My attempt.
(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.
(b) I dont know how to prove.
(c) I proved in a previous question that
if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.
Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.
Is (a) and (c) corrects? I need help with item (b).
real-analysis derivatives inverse-function-theorem
$endgroup$
2
$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33
1
$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34
$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03
add a comment |
$begingroup$
Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.
(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.
(b) Prove that $f'$ is invertible.
(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.
My attempt.
(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.
(b) I dont know how to prove.
(c) I proved in a previous question that
if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.
Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.
Is (a) and (c) corrects? I need help with item (b).
real-analysis derivatives inverse-function-theorem
$endgroup$
Let $f:mathbb{R}^{n} to mathbb{R}^{n}$ be a function of class $C^1$ and suppose that there is $k>0$ such that
$$Vert f(x) - f(y) Vert geq k Vert x - y Vert$$
for any $x,y in mathbb{R}^{n}$.
(a) Prove that $f$ is injective and $f(mathbb{R}^{n})$ is closed.
(b) Prove that $f'$ is invertible.
(c) Prove that $f(mathbb{R}^{n})$ is open. Conclude that $f$ is a $C^1$ diffeomorphism of $mathbb{R}^{n}$.
My attempt.
(a) If $f(x) = f(y)$, then $Vert x - y Vert = 0$, that is, $x=y$. Take $(f(x_{n}))$ such that $f(x_{n}) to p$. By hypothesis, $(x_{n})$ is Cauchy and by continuity, $f(x_{n}) to f(q) = p$ where $x_{n} to q$. Thus, $f(mathbb{R}^{n})$ is closed.
(b) I dont know how to prove.
(c) I proved in a previous question that
if $f: U to mathbb{R}^{n}$ with $U subset mathbb{R}^{n}$ is $C^1$ with $det Df neq 0$, then $f$ is an open map.
Suppose (b), $f$ is an open map and, therefore, $f(mathbb{R}^{n})$ is open. So, $f(mathbb{R}^{n})$ is non-empty clopen set, that is, $f(mathbb{R}^{n}) = mathbb{R}^{n}$. By Inverse Function Theorem, $f$ is a local diffeomorphism. Note that $f: mathbb{R}^{n} to mathbb{R}^{n}$ is bijective and, since $f$ is a local diffeomorphism, $f^{-1}$ is differentiable for each $x$. Then $f$ is a $C^1$ diffeormorphism of $mathbb{R}^{n}$.
Is (a) and (c) corrects? I need help with item (b).
real-analysis derivatives inverse-function-theorem
real-analysis derivatives inverse-function-theorem
asked Jan 23 at 20:56


Lucas CorrêaLucas Corrêa
1,6231321
1,6231321
2
$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33
1
$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34
$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03
add a comment |
2
$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33
1
$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34
$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03
2
2
$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33
$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33
1
1
$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34
$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34
$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03
$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
$$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
Then:
$$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
This leads to:
$$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
$$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$
So $Df(x_0)$ is invertible.
(b) and (c) are correct.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085065%2fif-f-is-c1-s-t-vert-fx-fy-vert-geq-k-vert-x-y-vert-then%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
$$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
Then:
$$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
This leads to:
$$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
$$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$
So $Df(x_0)$ is invertible.
(b) and (c) are correct.
$endgroup$
add a comment |
$begingroup$
Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
$$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
Then:
$$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
This leads to:
$$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
$$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$
So $Df(x_0)$ is invertible.
(b) and (c) are correct.
$endgroup$
add a comment |
$begingroup$
Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
$$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
Then:
$$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
This leads to:
$$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
$$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$
So $Df(x_0)$ is invertible.
(b) and (c) are correct.
$endgroup$
Let $yin mathbb{R}^{n}setminus{0 }$, $tinmathbb{R}$. Then by definition of $Df(x_0)$
$$lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}=0$$
Then:
$$frac{Vert{f(x_0+ty)-f(x_0)-Dfcdot ty}Vert}{Vert tyVert}geqfrac{Vert{f(x_0+ty)-f(x_0)Vert-Vert Df(x_0)cdot ty}Vert}{Vert tyVert}geq frac{kVert ty Vert-Vert Df(x_0)cdot tyVert}{Vert ty Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
This leads to:
$$0=lim_{trightarrow0}frac{Vert{f(x_0+ty)-f(x_0)-Df(x_0)cdot ty}Vert}{Vert tyVert}geqlim_{trightarrow0}k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}=k-frac{Vert Df(x_0) cdot y Vert}{Vert y Vert}$$
$$Rightarrow Vert Df(x_0) cdot y Vertgeq k Vert y Vert >0$$
So $Df(x_0)$ is invertible.
(b) and (c) are correct.
answered Jan 23 at 22:00
Martin ErhardtMartin Erhardt
21019
21019
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085065%2fif-f-is-c1-s-t-vert-fx-fy-vert-geq-k-vert-x-y-vert-then%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Parts (a) and (c) look good. Re part (b), the question should probably say to prove that $Df$ is invertible.
$endgroup$
– Jordan Green
Jan 23 at 21:33
1
$begingroup$
For part (b), what if there is a point $x$ so that $Df(x)$ is not invertible?
$endgroup$
– Jordan Green
Jan 23 at 21:34
$begingroup$
If $Df$ is not invertible for some $x$, there is a unity vector $v$ such that $D_{x}f(v) = 0$. But, $D_{x}f(v) = lim_{t to 0}frac{Vert f(x+tv) - f(x)Vert}{|t|} = 0$, that is, for $epsilon >0$ there is $delta > 0$ such that $|t|<delta$ implies $Vert f(x+tv) - f(x)Vert < k|t| = kVert tv Vert = kVert x+tv - x$, a contradiction.
$endgroup$
– Lucas Corrêa
Jan 23 at 22:03