If $fin BV(mathbb{T})cap C(mathbb{T})$ does the Fourier series of $f$ converge uniformly to $f$?












2












$begingroup$


Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.



If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$



If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$



Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.




Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$











share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
    $endgroup$
    – Kavi Rama Murthy
    Jan 22 at 10:28
















2












$begingroup$


Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.



If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$



If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$



Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.




Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$











share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
    $endgroup$
    – Kavi Rama Murthy
    Jan 22 at 10:28














2












2








2


1



$begingroup$


Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.



If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$



If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$



Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.




Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$











share|cite|improve this question











$endgroup$




Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.



If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$



If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$



Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.




Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$








fourier-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 22 at 10:29







Bob

















asked Jan 22 at 10:26









BobBob

1,7311725




1,7311725








  • 2




    $begingroup$
    This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
    $endgroup$
    – Kavi Rama Murthy
    Jan 22 at 10:28














  • 2




    $begingroup$
    This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
    $endgroup$
    – Kavi Rama Murthy
    Jan 22 at 10:28








2




2




$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28




$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28










1 Answer
1






active

oldest

votes


















1












$begingroup$

Let's prove the theorem for real-valued functions.



First: notations and useful results



If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
$$mu _f((a,b])=f(b)-f(a).$$
Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
$$|mu_f|((a,b])=V_f(b)-V_f(a).$$
Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
$$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
that leads to:
$$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
In our case, $f$ is also continuous, so actually we also have that:
$$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$



Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$



Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
In the answer to this question it is proved that:
$$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$



Second: a reformulation of what we want to prove



We have that:
$$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
so we want to prove that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$



Now:
If $deltain(0,pi)$ we have that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
and:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$



Third: first integral estimate



Let's use the integration by parts formula:
$$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
$$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
and so:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$



Fourth: second integral estimate



Since:
$$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
$$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
Now:
$$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
so:
$$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$



So, since $fin L^1([-pi,pi])$, we have that
$$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



So, it remains to prove that:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
With the same technique as before, we have that:



$$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
and since $f,psiin L^1([-pi,pi])$
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082977%2fif-f-in-bv-mathbbt-cap-c-mathbbt-does-the-fourier-series-of-f-conver%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let's prove the theorem for real-valued functions.



    First: notations and useful results



    If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
    $$mu _f((a,b])=f(b)-f(a).$$
    Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
    $$|mu_f|((a,b])=V_f(b)-V_f(a).$$
    Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
    $$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
    that leads to:
    $$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
    In our case, $f$ is also continuous, so actually we also have that:
    $$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$



    Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$



    Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
    In the answer to this question it is proved that:
    $$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$



    Second: a reformulation of what we want to prove



    We have that:
    $$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
    so we want to prove that:
    $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$



    Now:
    If $deltain(0,pi)$ we have that:
    $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
    So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
    $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
    and:
    $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$



    Third: first integral estimate



    Let's use the integration by parts formula:
    $$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
    Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
    $$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
    and so:
    $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$



    Fourth: second integral estimate



    Since:
    $$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
    $$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
    Now:
    $$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
    so:
    $$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
    where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
    and then:
    $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
    le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$



    So, since $fin L^1([-pi,pi])$, we have that
    $$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
    and then:
    $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



    So, it remains to prove that:
    $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



    Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
    $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
    With the same technique as before, we have that:



    $$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
    and since $f,psiin L^1([-pi,pi])$
    $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Let's prove the theorem for real-valued functions.



      First: notations and useful results



      If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
      $$mu _f((a,b])=f(b)-f(a).$$
      Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
      $$|mu_f|((a,b])=V_f(b)-V_f(a).$$
      Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
      $$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
      that leads to:
      $$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
      In our case, $f$ is also continuous, so actually we also have that:
      $$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$



      Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$



      Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
      In the answer to this question it is proved that:
      $$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$



      Second: a reformulation of what we want to prove



      We have that:
      $$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
      so we want to prove that:
      $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$



      Now:
      If $deltain(0,pi)$ we have that:
      $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
      So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
      $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
      and:
      $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$



      Third: first integral estimate



      Let's use the integration by parts formula:
      $$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
      Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
      $$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
      and so:
      $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$



      Fourth: second integral estimate



      Since:
      $$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
      $$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
      Now:
      $$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
      so:
      $$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
      where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
      and then:
      $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
      le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$



      So, since $fin L^1([-pi,pi])$, we have that
      $$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
      and then:
      $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



      So, it remains to prove that:
      $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



      Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
      $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
      With the same technique as before, we have that:



      $$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
      and since $f,psiin L^1([-pi,pi])$
      $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Let's prove the theorem for real-valued functions.



        First: notations and useful results



        If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
        $$mu _f((a,b])=f(b)-f(a).$$
        Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
        $$|mu_f|((a,b])=V_f(b)-V_f(a).$$
        Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
        $$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
        that leads to:
        $$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
        In our case, $f$ is also continuous, so actually we also have that:
        $$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$



        Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$



        Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
        In the answer to this question it is proved that:
        $$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$



        Second: a reformulation of what we want to prove



        We have that:
        $$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
        so we want to prove that:
        $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$



        Now:
        If $deltain(0,pi)$ we have that:
        $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
        So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
        $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
        and:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$



        Third: first integral estimate



        Let's use the integration by parts formula:
        $$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
        Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
        $$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
        and so:
        $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$



        Fourth: second integral estimate



        Since:
        $$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
        $$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
        Now:
        $$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
        so:
        $$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
        where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
        and then:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
        le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$



        So, since $fin L^1([-pi,pi])$, we have that
        $$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
        and then:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



        So, it remains to prove that:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



        Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
        With the same technique as before, we have that:



        $$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
        and since $f,psiin L^1([-pi,pi])$
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$






        share|cite|improve this answer











        $endgroup$



        Let's prove the theorem for real-valued functions.



        First: notations and useful results



        If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
        $$mu _f((a,b])=f(b)-f(a).$$
        Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
        $$|mu_f|((a,b])=V_f(b)-V_f(a).$$
        Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
        $$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
        that leads to:
        $$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
        In our case, $f$ is also continuous, so actually we also have that:
        $$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$



        Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$



        Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
        In the answer to this question it is proved that:
        $$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$



        Second: a reformulation of what we want to prove



        We have that:
        $$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
        so we want to prove that:
        $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$



        Now:
        If $deltain(0,pi)$ we have that:
        $$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
        So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
        $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
        and:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$



        Third: first integral estimate



        Let's use the integration by parts formula:
        $$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
        Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
        $$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
        and so:
        $$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$



        Fourth: second integral estimate



        Since:
        $$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
        $$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
        Now:
        $$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
        so:
        $$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
        where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
        and then:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
        le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$



        So, since $fin L^1([-pi,pi])$, we have that
        $$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
        and then:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



        So, it remains to prove that:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$



        Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
        With the same technique as before, we have that:



        $$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
        and since $f,psiin L^1([-pi,pi])$
        $$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Feb 3 at 0:23

























        answered Jan 23 at 22:13









        BobBob

        1,7311725




        1,7311725






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082977%2fif-f-in-bv-mathbbt-cap-c-mathbbt-does-the-fourier-series-of-f-conver%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith