If $fin BV(mathbb{T})cap C(mathbb{T})$ does the Fourier series of $f$ converge uniformly to $f$?
$begingroup$
Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.
If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$
If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$
Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.
Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$
fourier-series
$endgroup$
add a comment |
$begingroup$
Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.
If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$
If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$
Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.
Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$
fourier-series
$endgroup$
2
$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28
add a comment |
$begingroup$
Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.
If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$
If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$
Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.
Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$
fourier-series
$endgroup$
Denote with $BV(mathbb{T})$ the set of the functions of bounded variation defined on the 1-torus $mathbb{T}$.
If $fin BV(mathbb{T})$, define
$$f^°:mathbb{T}tomathbb{C}, tmapsto frac{lim_{sto t^+}f(s)+lim_{sto t^-}f(s)}{2}.$$
If $fin L^1(mathbb{T})$, define:
$$hat{f}:mathbb{Z}tomathbb{C}, nmapstoint_{-pi}^{pi}f(t)e^{-int}frac{operatorname{d}t}{2pi}$$
Then (see Duoandikoetxea - Fourier Analysis, Theorem 1.2):
$$forall fin BV(mathbb{T}), forall tinmathbb{T}, sum_{n=-N}^Nhat{f}(n)e^{int}to f^°(t), Ntoinfty.$$
Obviosly, we can't expect much more then pointwise convergence if $fin BV(mathbb{T})$ because uniform convergence would imply that $fin C(mathbb{T})$ while in general this is not the case. However, if $fin BV(mathbb{T})cap C(mathbb{T})$, then $f^°=f$, and so the question makes sense, i.e.
Is it true that if $fin BV(mathbb{T})cap C(mathbb{T})$ then $sup_{tinmathbb{T}}|sum_{n=-N}^Nhat{f}(n)e^{int}- f(t)|to 0, Ntoinfty?$
fourier-series
fourier-series
edited Jan 22 at 10:29
Bob
asked Jan 22 at 10:26


BobBob
1,7311725
1,7311725
2
$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28
add a comment |
2
$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28
2
2
$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28
$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let's prove the theorem for real-valued functions.
First: notations and useful results
If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
$$mu _f((a,b])=f(b)-f(a).$$
Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
$$|mu_f|((a,b])=V_f(b)-V_f(a).$$
Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
$$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
that leads to:
$$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
In our case, $f$ is also continuous, so actually we also have that:
$$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$
Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
In the answer to this question it is proved that:
$$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$
Second: a reformulation of what we want to prove
We have that:
$$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
so we want to prove that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$
Now:
If $deltain(0,pi)$ we have that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
and:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$
Third: first integral estimate
Let's use the integration by parts formula:
$$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
$$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
and so:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
Fourth: second integral estimate
Since:
$$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
$$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
Now:
$$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
so:
$$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$
So, since $fin L^1([-pi,pi])$, we have that
$$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
So, it remains to prove that:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
With the same technique as before, we have that:
$$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
and since $f,psiin L^1([-pi,pi])$
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082977%2fif-f-in-bv-mathbbt-cap-c-mathbbt-does-the-fourier-series-of-f-conver%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let's prove the theorem for real-valued functions.
First: notations and useful results
If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
$$mu _f((a,b])=f(b)-f(a).$$
Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
$$|mu_f|((a,b])=V_f(b)-V_f(a).$$
Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
$$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
that leads to:
$$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
In our case, $f$ is also continuous, so actually we also have that:
$$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$
Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
In the answer to this question it is proved that:
$$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$
Second: a reformulation of what we want to prove
We have that:
$$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
so we want to prove that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$
Now:
If $deltain(0,pi)$ we have that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
and:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$
Third: first integral estimate
Let's use the integration by parts formula:
$$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
$$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
and so:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
Fourth: second integral estimate
Since:
$$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
$$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
Now:
$$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
so:
$$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$
So, since $fin L^1([-pi,pi])$, we have that
$$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
So, it remains to prove that:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
With the same technique as before, we have that:
$$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
and since $f,psiin L^1([-pi,pi])$
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$
$endgroup$
add a comment |
$begingroup$
Let's prove the theorem for real-valued functions.
First: notations and useful results
If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
$$mu _f((a,b])=f(b)-f(a).$$
Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
$$|mu_f|((a,b])=V_f(b)-V_f(a).$$
Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
$$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
that leads to:
$$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
In our case, $f$ is also continuous, so actually we also have that:
$$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$
Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
In the answer to this question it is proved that:
$$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$
Second: a reformulation of what we want to prove
We have that:
$$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
so we want to prove that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$
Now:
If $deltain(0,pi)$ we have that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
and:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$
Third: first integral estimate
Let's use the integration by parts formula:
$$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
$$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
and so:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
Fourth: second integral estimate
Since:
$$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
$$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
Now:
$$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
so:
$$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$
So, since $fin L^1([-pi,pi])$, we have that
$$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
So, it remains to prove that:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
With the same technique as before, we have that:
$$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
and since $f,psiin L^1([-pi,pi])$
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$
$endgroup$
add a comment |
$begingroup$
Let's prove the theorem for real-valued functions.
First: notations and useful results
If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
$$mu _f((a,b])=f(b)-f(a).$$
Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
$$|mu_f|((a,b])=V_f(b)-V_f(a).$$
Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
$$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
that leads to:
$$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
In our case, $f$ is also continuous, so actually we also have that:
$$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$
Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
In the answer to this question it is proved that:
$$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$
Second: a reformulation of what we want to prove
We have that:
$$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
so we want to prove that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$
Now:
If $deltain(0,pi)$ we have that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
and:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$
Third: first integral estimate
Let's use the integration by parts formula:
$$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
$$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
and so:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
Fourth: second integral estimate
Since:
$$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
$$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
Now:
$$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
so:
$$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$
So, since $fin L^1([-pi,pi])$, we have that
$$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
So, it remains to prove that:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
With the same technique as before, we have that:
$$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
and since $f,psiin L^1([-pi,pi])$
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$
$endgroup$
Let's prove the theorem for real-valued functions.
First: notations and useful results
If $f:mathbb{R}tomathbb{R}$ is a $2pi$-periodic function continuous from the right of bounded variation over a period, denote the Lebesgue-Stieltjes signed measure associated to $f$ with $mu_f$, i.e. $mu_f$ is the only signed measure such that
$$mu _f((a,b])=f(b)-f(a).$$
Also, define $V_f:mathbb{R}to mathbb{R}$ as a variation of $f$, i.e.
$$|mu_f|((a,b])=V_f(b)-V_f(a).$$
Recall that if $varphiin C_c^1(mathbb{R})$ then it holds the follow integration by parts formula:
$$int_mathbb{R}f(t)varphi'(t)operatorname{d}t=-int_mathbb{R}varphi(t)operatorname{d}mu_f(t)$$
that leads to:
$$forallvarphiin C^1(mathbb{R}), forall ainmathbb{R}, forall b>a, int_a^bf(t)varphi'(t)operatorname{d}t=f(b^+)varphi(b)-f(a^-)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
In our case, $f$ is also continuous, so actually we also have that:
$$mu _f([a,b])=f(b)-f(a) \ |mu _f|([a,b])=V_f(b)-V_f(a)\ int_a^bf(t)varphi'(t)operatorname{d}t=f(b)varphi(b)-f(a)varphi(a)-int_{[a,b]}varphi(t)operatorname{d}mu_f(t).$$
Also, define $f_x(t):=f(x+t)-f(x)$ and notice that $mu_{f_x}(A)=mu_{f}(x+A)$, $|mu_{f_x}|(A)=|mu_{f}|(x+A)$ and $V_{f_x}(t)=V_f(x+t).$
Also, define $$varphi_N(s):=int_0^s frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}operatorname{d}t$$
In the answer to this question it is proved that:
$$exists C>0, forall sin[-pi,pi], forall Ninmathbb{N}, |varphi_N(s)|le C.$$
Second: a reformulation of what we want to prove
We have that:
$$sum_{n=-N}^N hat{f}(n)e^{inx}-f(x)=int_{-pi}^pi(f(x+t)-f(x))frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi} = int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi},$$
so we want to prove that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto +infty.$$
Now:
If $deltain(0,pi)$ we have that:
$$sup_{xin[-pi,pi]}left|int_{-pi}^pi f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|\ le sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right| + sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|.$$
So it enough to prove that for all $varepsilon>0$ there exists $deltain(0,pi)$ such that:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
and:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to0, Nto+infty.$$
Third: first integral estimate
Let's use the integration by parts formula:
$$left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|=left|int_{-delta}^delta f_x(t) varphi_N'(t)frac{operatorname{d}t}{2pi}right|\ = frac{1}{2pi}left|-int_{[-delta,delta]} varphi_N(t)operatorname{d}mu_{f_x}(t)+f_x(delta)varphi_N(delta)-f_x(-delta)varphi_N(-delta)right|le frac{C}{pi} |mu_{f_x}|([-delta,delta]) \ = frac{C}{pi} |mu_{f}|([x-delta,x+delta]) = frac{C}{pi} (V_f(x+delta)-V_f(x+delta)).$$
Now, being $f$ continuous, we have that $V_f$ is continuous and so uniformly continuous e.g. over the interval $[-2pi,2pi]$. So, if $varepsilon>0$ and $deltain(0,frac{pi}{2})$ is such that for $|x-y|le 2delta$ we have that $|V_f(x)-V_f(y)|<varepsilon$, then we have that:
$$forall xin [-pi,pi], (V_f(x+delta)-V_f(x+delta)) <varepsilon$$
and so:
$$forall Ninmathbb{N}, sup_{xin[-pi,pi]}left|int_{-delta}^delta f_x(t)frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}frac{operatorname{d}t}{2pi}right|le frac{C}{pi}varepsilon$$
Fourth: second integral estimate
Since:
$$sinleft((N+frac{1}{2})tright)= sin (Nt) cos(frac{t}{2})+cos (Nt) sin(frac{t}{2}),$$ we have that:
$$frac{sin((N+frac{1}{2})t)}{sin(frac{t}{2})}=frac{sin(Nt)}{tan(frac{t}{2})}+cos(Nt).$$
Now:
$$int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}t = -int_{-pi}^{pi} f_x(t-frac{pi}{N}) cos(Nt) operatorname{d}t,$$
so:
$$left|int_{-pi}^{pi} f_x(t) cos(Nt) operatorname{d}tright| = left|frac{1}{2} int_{-pi}^{pi} (f_x(t)-f_x(t-frac{pi}{N})) cos(Nt) operatorname{d}tright| = left| frac{1}{2} int_{-pi}^{pi} (f(t)-f(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|le frac{1}{2} int_{-pi}^{pi} left|(f(t)-f(t-frac{pi}{N}))right| operatorname{d}tle omega_{f,1}(frac{pi}{N}) $$
where $$omega_{g,1}(alpha)=sup_{hin[-alpha,alpha]}int_{-pi}^{pi} |g(t+h)-g(t)|operatorname{d}t$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|le sup_{xin[-pi,pi]}left|int_{[-pi,pi]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|
le frac{1}{2pi} omega_{f,1}(frac{pi}{N})$$
So, since $fin L^1([-pi,pi])$, we have that
$$omega_{f,1}(frac{pi}{N})to 0, Nto+infty$$
and then:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)cos(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
So, it remains to prove that:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)frac{sin(Nt)}{tan(frac{t}{2})}frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
Now, let $psi$ be a continuous $2pi$-function that coincides with $tmapsto frac{1}{tan(frac{t}{2})}$ on $[-pi,pi]backslash[-delta,delta]$. Then, what we want to prove is equivalent to:
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|to 0, Nto+infty.$$
With the same technique as before, we have that:
$$left|int_{[-pi,pi]} f_x(t)psi(t)sin(Nt){operatorname{d}t}right|le left|frac{1}{2} int_{-pi}^{pi} (f_x(t)psi(t)-f_x(t-frac{pi}{N}))psi(t-frac{pi}{N})) cos(Nt) operatorname{d}tright|\ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)+f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{1}{2} int_{-pi}^{pi}left| f_x(t)psi(t)-f_x(t-frac{pi}{N})psi(t)right|operatorname{d}t+ frac{1}{2} int_{-pi}^{pi}left|f_x(t-frac{pi}{N})psi(t)-f_x(t-frac{pi}{N})psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} int_{-pi}^{pi}left| f_x(t)-f_x(t-frac{pi}{N})right|operatorname{d}t+ frac{|f|_infty}{2} int_{-pi}^{pi}left|psi(t)-psi(t-frac{pi}{N}))right|operatorname{d}t \ le frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})$$
and since $f,psiin L^1([-pi,pi])$
$$sup_{xin[-pi,pi]}left|int_{[-pi,pi]backslash [-delta,delta]} f_x(t)psi(t)sin(Nt)frac{operatorname{d}t}{2pi}right|lefrac{1}{2pi}left(frac{|psi|_infty}{2} omega_{f,1}(frac{pi}{N})+ frac{|f|_infty}{2} omega_{psi,1}(frac{pi}{N})right)to 0, Nto+infty.$$
edited Feb 3 at 0:23
answered Jan 23 at 22:13


BobBob
1,7311725
1,7311725
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082977%2fif-f-in-bv-mathbbt-cap-c-mathbbt-does-the-fourier-series-of-f-conver%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
This is true and it is a basic theorem in the theory of Fourier series. Ref: Fourier Series by Edwards.
$endgroup$
– Kavi Rama Murthy
Jan 22 at 10:28