If $sum (a_n)^2$ converges then $ sum frac{a_n}{n} $ converges (one solution)
$begingroup$
My solution is detailed, I would like to know if it is correct or not.
As the series converges and each $(a_n)^2$ is positive, then exists $K> 0$ such that : $(a_1)^2+(a_2)^2+ cdots + (a_n)^2 < K, forall n in mathbb{N}$.
Given $n in mathbb{N}$ : $ lvert dfrac{a_n}{n} rvert = dfrac{lvert a_n rvert}{n} leq dfrac{(a_n)^2}{n} leq (a_n)^2$ so :
$dfrac{lvert a_1 rvert}{1} + dfrac{lvert a_2 rvert}{2} + cdots dfrac{lvert a_n rvert}{n} leq (a_1)^2+(a_2)^2 + cdots (a_n)^2<K$
Finally the series $sum dfrac{lvert a_n vert}{n}$ converge, consequently $sum dfrac{a_n}{n} $ converge.
real-analysis sequences-and-series convergence
$endgroup$
|
show 1 more comment
$begingroup$
My solution is detailed, I would like to know if it is correct or not.
As the series converges and each $(a_n)^2$ is positive, then exists $K> 0$ such that : $(a_1)^2+(a_2)^2+ cdots + (a_n)^2 < K, forall n in mathbb{N}$.
Given $n in mathbb{N}$ : $ lvert dfrac{a_n}{n} rvert = dfrac{lvert a_n rvert}{n} leq dfrac{(a_n)^2}{n} leq (a_n)^2$ so :
$dfrac{lvert a_1 rvert}{1} + dfrac{lvert a_2 rvert}{2} + cdots dfrac{lvert a_n rvert}{n} leq (a_1)^2+(a_2)^2 + cdots (a_n)^2<K$
Finally the series $sum dfrac{lvert a_n vert}{n}$ converge, consequently $sum dfrac{a_n}{n} $ converge.
real-analysis sequences-and-series convergence
$endgroup$
1
$begingroup$
This is a shining example of the use of the Cauchy--Schwarz inequality.
$endgroup$
– Pedro Tamaroff♦
Jan 27 at 20:36
$begingroup$
I don’t see how you can say $lvert a_nrvert / n le a_n^2/n$, so I’m not sure this proof works. What you want here is the Cauchy-Schwarz inequality.
$endgroup$
– User8128
Jan 27 at 20:37
$begingroup$
$|a_n|le a_n^2iff a_nle -1 vee a_n=0 vee a_nge 1$
$endgroup$
– Ixion
Jan 27 at 20:39
$begingroup$
If $sum a_n^2$ converges, then so does $sum |a_n|^3$ by comparison test, and now by Holder's inequality, $$ sum frac{|a_n| }{n} le left (sum |a_n|^3 right )^{1/3} left( sumfrac 1{n^{3/2}} right)^{2/3} <infty $$ without using $sum frac{1}{n^2} < infty$...
$endgroup$
– Calvin Khor
Jan 27 at 21:08
$begingroup$
@CalvinKhor I do not see why the convergence of $1/n^{3/2} $ can be more eligible for the answer than that of $1/n^2$.
$endgroup$
– user
Jan 27 at 21:25
|
show 1 more comment
$begingroup$
My solution is detailed, I would like to know if it is correct or not.
As the series converges and each $(a_n)^2$ is positive, then exists $K> 0$ such that : $(a_1)^2+(a_2)^2+ cdots + (a_n)^2 < K, forall n in mathbb{N}$.
Given $n in mathbb{N}$ : $ lvert dfrac{a_n}{n} rvert = dfrac{lvert a_n rvert}{n} leq dfrac{(a_n)^2}{n} leq (a_n)^2$ so :
$dfrac{lvert a_1 rvert}{1} + dfrac{lvert a_2 rvert}{2} + cdots dfrac{lvert a_n rvert}{n} leq (a_1)^2+(a_2)^2 + cdots (a_n)^2<K$
Finally the series $sum dfrac{lvert a_n vert}{n}$ converge, consequently $sum dfrac{a_n}{n} $ converge.
real-analysis sequences-and-series convergence
$endgroup$
My solution is detailed, I would like to know if it is correct or not.
As the series converges and each $(a_n)^2$ is positive, then exists $K> 0$ such that : $(a_1)^2+(a_2)^2+ cdots + (a_n)^2 < K, forall n in mathbb{N}$.
Given $n in mathbb{N}$ : $ lvert dfrac{a_n}{n} rvert = dfrac{lvert a_n rvert}{n} leq dfrac{(a_n)^2}{n} leq (a_n)^2$ so :
$dfrac{lvert a_1 rvert}{1} + dfrac{lvert a_2 rvert}{2} + cdots dfrac{lvert a_n rvert}{n} leq (a_1)^2+(a_2)^2 + cdots (a_n)^2<K$
Finally the series $sum dfrac{lvert a_n vert}{n}$ converge, consequently $sum dfrac{a_n}{n} $ converge.
real-analysis sequences-and-series convergence
real-analysis sequences-and-series convergence
edited Jan 27 at 20:44


José Carlos Santos
170k23132238
170k23132238
asked Jan 27 at 20:33
Juan Daniel Valdivia FuentesJuan Daniel Valdivia Fuentes
758
758
1
$begingroup$
This is a shining example of the use of the Cauchy--Schwarz inequality.
$endgroup$
– Pedro Tamaroff♦
Jan 27 at 20:36
$begingroup$
I don’t see how you can say $lvert a_nrvert / n le a_n^2/n$, so I’m not sure this proof works. What you want here is the Cauchy-Schwarz inequality.
$endgroup$
– User8128
Jan 27 at 20:37
$begingroup$
$|a_n|le a_n^2iff a_nle -1 vee a_n=0 vee a_nge 1$
$endgroup$
– Ixion
Jan 27 at 20:39
$begingroup$
If $sum a_n^2$ converges, then so does $sum |a_n|^3$ by comparison test, and now by Holder's inequality, $$ sum frac{|a_n| }{n} le left (sum |a_n|^3 right )^{1/3} left( sumfrac 1{n^{3/2}} right)^{2/3} <infty $$ without using $sum frac{1}{n^2} < infty$...
$endgroup$
– Calvin Khor
Jan 27 at 21:08
$begingroup$
@CalvinKhor I do not see why the convergence of $1/n^{3/2} $ can be more eligible for the answer than that of $1/n^2$.
$endgroup$
– user
Jan 27 at 21:25
|
show 1 more comment
1
$begingroup$
This is a shining example of the use of the Cauchy--Schwarz inequality.
$endgroup$
– Pedro Tamaroff♦
Jan 27 at 20:36
$begingroup$
I don’t see how you can say $lvert a_nrvert / n le a_n^2/n$, so I’m not sure this proof works. What you want here is the Cauchy-Schwarz inequality.
$endgroup$
– User8128
Jan 27 at 20:37
$begingroup$
$|a_n|le a_n^2iff a_nle -1 vee a_n=0 vee a_nge 1$
$endgroup$
– Ixion
Jan 27 at 20:39
$begingroup$
If $sum a_n^2$ converges, then so does $sum |a_n|^3$ by comparison test, and now by Holder's inequality, $$ sum frac{|a_n| }{n} le left (sum |a_n|^3 right )^{1/3} left( sumfrac 1{n^{3/2}} right)^{2/3} <infty $$ without using $sum frac{1}{n^2} < infty$...
$endgroup$
– Calvin Khor
Jan 27 at 21:08
$begingroup$
@CalvinKhor I do not see why the convergence of $1/n^{3/2} $ can be more eligible for the answer than that of $1/n^2$.
$endgroup$
– user
Jan 27 at 21:25
1
1
$begingroup$
This is a shining example of the use of the Cauchy--Schwarz inequality.
$endgroup$
– Pedro Tamaroff♦
Jan 27 at 20:36
$begingroup$
This is a shining example of the use of the Cauchy--Schwarz inequality.
$endgroup$
– Pedro Tamaroff♦
Jan 27 at 20:36
$begingroup$
I don’t see how you can say $lvert a_nrvert / n le a_n^2/n$, so I’m not sure this proof works. What you want here is the Cauchy-Schwarz inequality.
$endgroup$
– User8128
Jan 27 at 20:37
$begingroup$
I don’t see how you can say $lvert a_nrvert / n le a_n^2/n$, so I’m not sure this proof works. What you want here is the Cauchy-Schwarz inequality.
$endgroup$
– User8128
Jan 27 at 20:37
$begingroup$
$|a_n|le a_n^2iff a_nle -1 vee a_n=0 vee a_nge 1$
$endgroup$
– Ixion
Jan 27 at 20:39
$begingroup$
$|a_n|le a_n^2iff a_nle -1 vee a_n=0 vee a_nge 1$
$endgroup$
– Ixion
Jan 27 at 20:39
$begingroup$
If $sum a_n^2$ converges, then so does $sum |a_n|^3$ by comparison test, and now by Holder's inequality, $$ sum frac{|a_n| }{n} le left (sum |a_n|^3 right )^{1/3} left( sumfrac 1{n^{3/2}} right)^{2/3} <infty $$ without using $sum frac{1}{n^2} < infty$...
$endgroup$
– Calvin Khor
Jan 27 at 21:08
$begingroup$
If $sum a_n^2$ converges, then so does $sum |a_n|^3$ by comparison test, and now by Holder's inequality, $$ sum frac{|a_n| }{n} le left (sum |a_n|^3 right )^{1/3} left( sumfrac 1{n^{3/2}} right)^{2/3} <infty $$ without using $sum frac{1}{n^2} < infty$...
$endgroup$
– Calvin Khor
Jan 27 at 21:08
$begingroup$
@CalvinKhor I do not see why the convergence of $1/n^{3/2} $ can be more eligible for the answer than that of $1/n^2$.
$endgroup$
– user
Jan 27 at 21:25
$begingroup$
@CalvinKhor I do not see why the convergence of $1/n^{3/2} $ can be more eligible for the answer than that of $1/n^2$.
$endgroup$
– user
Jan 27 at 21:25
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
No, that is not correct. You have no reason to assume that$$(forall ninmathbb{N}):frac{lvert a_nrvert}nleqslant{a_n}^2.$$
The statement that you want to prove is a consequence of the Cauchy-Schwarz inequality and of the convergence of the series $displaystylesum_{n=1}^inftyfrac1{n^2}$.
$endgroup$
$begingroup$
Yes, you are right. Is true but if $lvert a_n rvert > 1$, thanks! :)
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:40
$begingroup$
@JuanDanielValdiviaFuentesJ If $|a_n|>1$ neither of the series can converge.
$endgroup$
– user
Jan 27 at 21:31
add a comment |
$begingroup$
Another way can be by using the AM-GM inequality: For positive $x,y$ we have $frac{x^2+y^2}{2} geq xy $. Now put $x=|a_k|$ and $y=dfrac{1}{k}$. Then, we have
$$ a_k^2 + frac{1}{k^2} geq 2frac{|a_k|}{k} $$
Adding up, we see that
$$ sum_{k=1}^n a_k^2 + sum_{k=1}^n frac{1}{k^2} geq 2 sum frac{ |a_k| }{k} $$
can you finish it?
$endgroup$
$begingroup$
Yes, the series $sum (a_n)^2 $ and $sum dfrac{1}{n^2}$ converge. So the serie $sum dfrac{lvert a_n rvert}{n}$ converge. But I can not use the fact that the series $sum dfrac{1}{n^2}$, converges because I had been told to find a way without using it.
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:47
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090082%2fif-sum-a-n2-converges-then-sum-fraca-nn-converges-one-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, that is not correct. You have no reason to assume that$$(forall ninmathbb{N}):frac{lvert a_nrvert}nleqslant{a_n}^2.$$
The statement that you want to prove is a consequence of the Cauchy-Schwarz inequality and of the convergence of the series $displaystylesum_{n=1}^inftyfrac1{n^2}$.
$endgroup$
$begingroup$
Yes, you are right. Is true but if $lvert a_n rvert > 1$, thanks! :)
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:40
$begingroup$
@JuanDanielValdiviaFuentesJ If $|a_n|>1$ neither of the series can converge.
$endgroup$
– user
Jan 27 at 21:31
add a comment |
$begingroup$
No, that is not correct. You have no reason to assume that$$(forall ninmathbb{N}):frac{lvert a_nrvert}nleqslant{a_n}^2.$$
The statement that you want to prove is a consequence of the Cauchy-Schwarz inequality and of the convergence of the series $displaystylesum_{n=1}^inftyfrac1{n^2}$.
$endgroup$
$begingroup$
Yes, you are right. Is true but if $lvert a_n rvert > 1$, thanks! :)
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:40
$begingroup$
@JuanDanielValdiviaFuentesJ If $|a_n|>1$ neither of the series can converge.
$endgroup$
– user
Jan 27 at 21:31
add a comment |
$begingroup$
No, that is not correct. You have no reason to assume that$$(forall ninmathbb{N}):frac{lvert a_nrvert}nleqslant{a_n}^2.$$
The statement that you want to prove is a consequence of the Cauchy-Schwarz inequality and of the convergence of the series $displaystylesum_{n=1}^inftyfrac1{n^2}$.
$endgroup$
No, that is not correct. You have no reason to assume that$$(forall ninmathbb{N}):frac{lvert a_nrvert}nleqslant{a_n}^2.$$
The statement that you want to prove is a consequence of the Cauchy-Schwarz inequality and of the convergence of the series $displaystylesum_{n=1}^inftyfrac1{n^2}$.
answered Jan 27 at 20:36


José Carlos SantosJosé Carlos Santos
170k23132238
170k23132238
$begingroup$
Yes, you are right. Is true but if $lvert a_n rvert > 1$, thanks! :)
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:40
$begingroup$
@JuanDanielValdiviaFuentesJ If $|a_n|>1$ neither of the series can converge.
$endgroup$
– user
Jan 27 at 21:31
add a comment |
$begingroup$
Yes, you are right. Is true but if $lvert a_n rvert > 1$, thanks! :)
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:40
$begingroup$
@JuanDanielValdiviaFuentesJ If $|a_n|>1$ neither of the series can converge.
$endgroup$
– user
Jan 27 at 21:31
$begingroup$
Yes, you are right. Is true but if $lvert a_n rvert > 1$, thanks! :)
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:40
$begingroup$
Yes, you are right. Is true but if $lvert a_n rvert > 1$, thanks! :)
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:40
$begingroup$
@JuanDanielValdiviaFuentesJ If $|a_n|>1$ neither of the series can converge.
$endgroup$
– user
Jan 27 at 21:31
$begingroup$
@JuanDanielValdiviaFuentesJ If $|a_n|>1$ neither of the series can converge.
$endgroup$
– user
Jan 27 at 21:31
add a comment |
$begingroup$
Another way can be by using the AM-GM inequality: For positive $x,y$ we have $frac{x^2+y^2}{2} geq xy $. Now put $x=|a_k|$ and $y=dfrac{1}{k}$. Then, we have
$$ a_k^2 + frac{1}{k^2} geq 2frac{|a_k|}{k} $$
Adding up, we see that
$$ sum_{k=1}^n a_k^2 + sum_{k=1}^n frac{1}{k^2} geq 2 sum frac{ |a_k| }{k} $$
can you finish it?
$endgroup$
$begingroup$
Yes, the series $sum (a_n)^2 $ and $sum dfrac{1}{n^2}$ converge. So the serie $sum dfrac{lvert a_n rvert}{n}$ converge. But I can not use the fact that the series $sum dfrac{1}{n^2}$, converges because I had been told to find a way without using it.
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:47
add a comment |
$begingroup$
Another way can be by using the AM-GM inequality: For positive $x,y$ we have $frac{x^2+y^2}{2} geq xy $. Now put $x=|a_k|$ and $y=dfrac{1}{k}$. Then, we have
$$ a_k^2 + frac{1}{k^2} geq 2frac{|a_k|}{k} $$
Adding up, we see that
$$ sum_{k=1}^n a_k^2 + sum_{k=1}^n frac{1}{k^2} geq 2 sum frac{ |a_k| }{k} $$
can you finish it?
$endgroup$
$begingroup$
Yes, the series $sum (a_n)^2 $ and $sum dfrac{1}{n^2}$ converge. So the serie $sum dfrac{lvert a_n rvert}{n}$ converge. But I can not use the fact that the series $sum dfrac{1}{n^2}$, converges because I had been told to find a way without using it.
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:47
add a comment |
$begingroup$
Another way can be by using the AM-GM inequality: For positive $x,y$ we have $frac{x^2+y^2}{2} geq xy $. Now put $x=|a_k|$ and $y=dfrac{1}{k}$. Then, we have
$$ a_k^2 + frac{1}{k^2} geq 2frac{|a_k|}{k} $$
Adding up, we see that
$$ sum_{k=1}^n a_k^2 + sum_{k=1}^n frac{1}{k^2} geq 2 sum frac{ |a_k| }{k} $$
can you finish it?
$endgroup$
Another way can be by using the AM-GM inequality: For positive $x,y$ we have $frac{x^2+y^2}{2} geq xy $. Now put $x=|a_k|$ and $y=dfrac{1}{k}$. Then, we have
$$ a_k^2 + frac{1}{k^2} geq 2frac{|a_k|}{k} $$
Adding up, we see that
$$ sum_{k=1}^n a_k^2 + sum_{k=1}^n frac{1}{k^2} geq 2 sum frac{ |a_k| }{k} $$
can you finish it?
edited Jan 27 at 21:27
user
5,92011031
5,92011031
answered Jan 27 at 20:40
Jimmy SabaterJimmy Sabater
2,560325
2,560325
$begingroup$
Yes, the series $sum (a_n)^2 $ and $sum dfrac{1}{n^2}$ converge. So the serie $sum dfrac{lvert a_n rvert}{n}$ converge. But I can not use the fact that the series $sum dfrac{1}{n^2}$, converges because I had been told to find a way without using it.
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:47
add a comment |
$begingroup$
Yes, the series $sum (a_n)^2 $ and $sum dfrac{1}{n^2}$ converge. So the serie $sum dfrac{lvert a_n rvert}{n}$ converge. But I can not use the fact that the series $sum dfrac{1}{n^2}$, converges because I had been told to find a way without using it.
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:47
$begingroup$
Yes, the series $sum (a_n)^2 $ and $sum dfrac{1}{n^2}$ converge. So the serie $sum dfrac{lvert a_n rvert}{n}$ converge. But I can not use the fact that the series $sum dfrac{1}{n^2}$, converges because I had been told to find a way without using it.
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:47
$begingroup$
Yes, the series $sum (a_n)^2 $ and $sum dfrac{1}{n^2}$ converge. So the serie $sum dfrac{lvert a_n rvert}{n}$ converge. But I can not use the fact that the series $sum dfrac{1}{n^2}$, converges because I had been told to find a way without using it.
$endgroup$
– Juan Daniel Valdivia Fuentes
Jan 27 at 20:47
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090082%2fif-sum-a-n2-converges-then-sum-fraca-nn-converges-one-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This is a shining example of the use of the Cauchy--Schwarz inequality.
$endgroup$
– Pedro Tamaroff♦
Jan 27 at 20:36
$begingroup$
I don’t see how you can say $lvert a_nrvert / n le a_n^2/n$, so I’m not sure this proof works. What you want here is the Cauchy-Schwarz inequality.
$endgroup$
– User8128
Jan 27 at 20:37
$begingroup$
$|a_n|le a_n^2iff a_nle -1 vee a_n=0 vee a_nge 1$
$endgroup$
– Ixion
Jan 27 at 20:39
$begingroup$
If $sum a_n^2$ converges, then so does $sum |a_n|^3$ by comparison test, and now by Holder's inequality, $$ sum frac{|a_n| }{n} le left (sum |a_n|^3 right )^{1/3} left( sumfrac 1{n^{3/2}} right)^{2/3} <infty $$ without using $sum frac{1}{n^2} < infty$...
$endgroup$
– Calvin Khor
Jan 27 at 21:08
$begingroup$
@CalvinKhor I do not see why the convergence of $1/n^{3/2} $ can be more eligible for the answer than that of $1/n^2$.
$endgroup$
– user
Jan 27 at 21:25