On $sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^4$ and Gieseking's constant
$begingroup$
I. Intro
While trying to solve this post about the function,
$$F(k)=sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^k$$
for $k=3$, I found out Mathematica can evaluate this in closed-form for general $k$ using the generalized hypergeometric function. Specifically, for $k=3,4$, it involves Catalan's constant $G$ and the "similar" Gieseking's constant $H$,
$$G = text{Cl}_2big(tfrac{pi}2big)=sum_{n=0}^inftyleft(frac1{(4n+1)^2}-frac1{(4n+3)^2}right)=0.91596dots$$
$$H = text{Cl}_2big(tfrac{pi}3big)=frac{3sqrt3}4sum_{n=0}^inftyleft(frac1{(3n+1)^2}-frac1{(3n+2)^2}right)=1.01494dots$$
with Clausen's integral $text{Cl}_2(theta)$.
II. Examples
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^3=248-128sqrt2-30sqrt2pi+144alpha$$
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^4=-1424+720sqrt3+112pi+14pi^3-360H$$
where,
$$alpha=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac12}right) = frac{4G+piln2}{4sqrt2}$$
$$H=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac14}right) =text{Cl}_2big(tfrac{pi}3big)$$
III. Notes
- The constants $G$ and $H$ seem to share certain features. As $delta=expbig(frac{2G}pibig)$ and $beta=expbig(frac{H}pibig)$ they are the Kneser-Mahler polynomial constants. (See p. 231 of "Mathematical Constants" by S. Finch.)
$G$ is a rational multiple of the volume of an ideal hyperbolic octahedron, while $H$ is the volume of the hyperbolic Gieseking manifold.- And so on.
IV. Question
Q: Are there other examples of a series or function $P(k)$ such that it has a closed-form in terms of Catalan's constant $G$ or Gieseking's constant $H$ depending on $k$?
sequences-and-series hypergeometric-function constants
$endgroup$
add a comment |
$begingroup$
I. Intro
While trying to solve this post about the function,
$$F(k)=sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^k$$
for $k=3$, I found out Mathematica can evaluate this in closed-form for general $k$ using the generalized hypergeometric function. Specifically, for $k=3,4$, it involves Catalan's constant $G$ and the "similar" Gieseking's constant $H$,
$$G = text{Cl}_2big(tfrac{pi}2big)=sum_{n=0}^inftyleft(frac1{(4n+1)^2}-frac1{(4n+3)^2}right)=0.91596dots$$
$$H = text{Cl}_2big(tfrac{pi}3big)=frac{3sqrt3}4sum_{n=0}^inftyleft(frac1{(3n+1)^2}-frac1{(3n+2)^2}right)=1.01494dots$$
with Clausen's integral $text{Cl}_2(theta)$.
II. Examples
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^3=248-128sqrt2-30sqrt2pi+144alpha$$
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^4=-1424+720sqrt3+112pi+14pi^3-360H$$
where,
$$alpha=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac12}right) = frac{4G+piln2}{4sqrt2}$$
$$H=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac14}right) =text{Cl}_2big(tfrac{pi}3big)$$
III. Notes
- The constants $G$ and $H$ seem to share certain features. As $delta=expbig(frac{2G}pibig)$ and $beta=expbig(frac{H}pibig)$ they are the Kneser-Mahler polynomial constants. (See p. 231 of "Mathematical Constants" by S. Finch.)
$G$ is a rational multiple of the volume of an ideal hyperbolic octahedron, while $H$ is the volume of the hyperbolic Gieseking manifold.- And so on.
IV. Question
Q: Are there other examples of a series or function $P(k)$ such that it has a closed-form in terms of Catalan's constant $G$ or Gieseking's constant $H$ depending on $k$?
sequences-and-series hypergeometric-function constants
$endgroup$
$begingroup$
Note: $enspace$ I think it’s better to discuss the integral of the last part of the equation chain $enspace$$displaystyle {}_{m+2}F_{m+1}left(frac{1}{2}…frac{1}{2};frac{3}{2}…frac{3}{2};frac{4}{e^{2x}}right) = sumlimits_{n=0}^inftyfrac{1}{e^{2xn}(2n+1)^{m+1}},$$displaystyle = frac{e^x}{m!} sumlimits_{v=0}^m {binom m v }(-x)^{m-v} intlimits_x^inftyfrac{t^v~dt}{sqrt{e^{2t}-4}},$ . Perhaps exists literature about $displaystyle intlimits_z^infty t^asqrt{frac{t}{e^t-1}}dt,$ which could help.
$endgroup$
– user90369
Jan 28 at 12:58
add a comment |
$begingroup$
I. Intro
While trying to solve this post about the function,
$$F(k)=sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^k$$
for $k=3$, I found out Mathematica can evaluate this in closed-form for general $k$ using the generalized hypergeometric function. Specifically, for $k=3,4$, it involves Catalan's constant $G$ and the "similar" Gieseking's constant $H$,
$$G = text{Cl}_2big(tfrac{pi}2big)=sum_{n=0}^inftyleft(frac1{(4n+1)^2}-frac1{(4n+3)^2}right)=0.91596dots$$
$$H = text{Cl}_2big(tfrac{pi}3big)=frac{3sqrt3}4sum_{n=0}^inftyleft(frac1{(3n+1)^2}-frac1{(3n+2)^2}right)=1.01494dots$$
with Clausen's integral $text{Cl}_2(theta)$.
II. Examples
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^3=248-128sqrt2-30sqrt2pi+144alpha$$
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^4=-1424+720sqrt3+112pi+14pi^3-360H$$
where,
$$alpha=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac12}right) = frac{4G+piln2}{4sqrt2}$$
$$H=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac14}right) =text{Cl}_2big(tfrac{pi}3big)$$
III. Notes
- The constants $G$ and $H$ seem to share certain features. As $delta=expbig(frac{2G}pibig)$ and $beta=expbig(frac{H}pibig)$ they are the Kneser-Mahler polynomial constants. (See p. 231 of "Mathematical Constants" by S. Finch.)
$G$ is a rational multiple of the volume of an ideal hyperbolic octahedron, while $H$ is the volume of the hyperbolic Gieseking manifold.- And so on.
IV. Question
Q: Are there other examples of a series or function $P(k)$ such that it has a closed-form in terms of Catalan's constant $G$ or Gieseking's constant $H$ depending on $k$?
sequences-and-series hypergeometric-function constants
$endgroup$
I. Intro
While trying to solve this post about the function,
$$F(k)=sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^k$$
for $k=3$, I found out Mathematica can evaluate this in closed-form for general $k$ using the generalized hypergeometric function. Specifically, for $k=3,4$, it involves Catalan's constant $G$ and the "similar" Gieseking's constant $H$,
$$G = text{Cl}_2big(tfrac{pi}2big)=sum_{n=0}^inftyleft(frac1{(4n+1)^2}-frac1{(4n+3)^2}right)=0.91596dots$$
$$H = text{Cl}_2big(tfrac{pi}3big)=frac{3sqrt3}4sum_{n=0}^inftyleft(frac1{(3n+1)^2}-frac1{(3n+2)^2}right)=1.01494dots$$
with Clausen's integral $text{Cl}_2(theta)$.
II. Examples
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^3=248-128sqrt2-30sqrt2pi+144alpha$$
$$sum_{n=0}^{infty}{2n+3choose n+1} left(frac{1}{2^n}cdotfrac{3}{2n+1}right)^4=-1424+720sqrt3+112pi+14pi^3-360H$$
where,
$$alpha=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac12}right) = frac{4G+piln2}{4sqrt2}$$
$$H=,_3F_2left(tfrac12,tfrac12,tfrac12;tfrac32,tfrac32;color{red}{tfrac14}right) =text{Cl}_2big(tfrac{pi}3big)$$
III. Notes
- The constants $G$ and $H$ seem to share certain features. As $delta=expbig(frac{2G}pibig)$ and $beta=expbig(frac{H}pibig)$ they are the Kneser-Mahler polynomial constants. (See p. 231 of "Mathematical Constants" by S. Finch.)
$G$ is a rational multiple of the volume of an ideal hyperbolic octahedron, while $H$ is the volume of the hyperbolic Gieseking manifold.- And so on.
IV. Question
Q: Are there other examples of a series or function $P(k)$ such that it has a closed-form in terms of Catalan's constant $G$ or Gieseking's constant $H$ depending on $k$?
sequences-and-series hypergeometric-function constants
sequences-and-series hypergeometric-function constants
edited Jan 23 at 2:38
Tito Piezas III
asked Jan 22 at 9:50


Tito Piezas IIITito Piezas III
27.7k367176
27.7k367176
$begingroup$
Note: $enspace$ I think it’s better to discuss the integral of the last part of the equation chain $enspace$$displaystyle {}_{m+2}F_{m+1}left(frac{1}{2}…frac{1}{2};frac{3}{2}…frac{3}{2};frac{4}{e^{2x}}right) = sumlimits_{n=0}^inftyfrac{1}{e^{2xn}(2n+1)^{m+1}},$$displaystyle = frac{e^x}{m!} sumlimits_{v=0}^m {binom m v }(-x)^{m-v} intlimits_x^inftyfrac{t^v~dt}{sqrt{e^{2t}-4}},$ . Perhaps exists literature about $displaystyle intlimits_z^infty t^asqrt{frac{t}{e^t-1}}dt,$ which could help.
$endgroup$
– user90369
Jan 28 at 12:58
add a comment |
$begingroup$
Note: $enspace$ I think it’s better to discuss the integral of the last part of the equation chain $enspace$$displaystyle {}_{m+2}F_{m+1}left(frac{1}{2}…frac{1}{2};frac{3}{2}…frac{3}{2};frac{4}{e^{2x}}right) = sumlimits_{n=0}^inftyfrac{1}{e^{2xn}(2n+1)^{m+1}},$$displaystyle = frac{e^x}{m!} sumlimits_{v=0}^m {binom m v }(-x)^{m-v} intlimits_x^inftyfrac{t^v~dt}{sqrt{e^{2t}-4}},$ . Perhaps exists literature about $displaystyle intlimits_z^infty t^asqrt{frac{t}{e^t-1}}dt,$ which could help.
$endgroup$
– user90369
Jan 28 at 12:58
$begingroup$
Note: $enspace$ I think it’s better to discuss the integral of the last part of the equation chain $enspace$$displaystyle {}_{m+2}F_{m+1}left(frac{1}{2}…frac{1}{2};frac{3}{2}…frac{3}{2};frac{4}{e^{2x}}right) = sumlimits_{n=0}^inftyfrac{1}{e^{2xn}(2n+1)^{m+1}},$$displaystyle = frac{e^x}{m!} sumlimits_{v=0}^m {binom m v }(-x)^{m-v} intlimits_x^inftyfrac{t^v~dt}{sqrt{e^{2t}-4}},$ . Perhaps exists literature about $displaystyle intlimits_z^infty t^asqrt{frac{t}{e^t-1}}dt,$ which could help.
$endgroup$
– user90369
Jan 28 at 12:58
$begingroup$
Note: $enspace$ I think it’s better to discuss the integral of the last part of the equation chain $enspace$$displaystyle {}_{m+2}F_{m+1}left(frac{1}{2}…frac{1}{2};frac{3}{2}…frac{3}{2};frac{4}{e^{2x}}right) = sumlimits_{n=0}^inftyfrac{1}{e^{2xn}(2n+1)^{m+1}},$$displaystyle = frac{e^x}{m!} sumlimits_{v=0}^m {binom m v }(-x)^{m-v} intlimits_x^inftyfrac{t^v~dt}{sqrt{e^{2t}-4}},$ . Perhaps exists literature about $displaystyle intlimits_z^infty t^asqrt{frac{t}{e^t-1}}dt,$ which could help.
$endgroup$
– user90369
Jan 28 at 12:58
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082938%2fon-sum-n-0-infty2n3-choose-n1-left-frac12n-cdot-frac32n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082938%2fon-sum-n-0-infty2n3-choose-n1-left-frac12n-cdot-frac32n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Note: $enspace$ I think it’s better to discuss the integral of the last part of the equation chain $enspace$$displaystyle {}_{m+2}F_{m+1}left(frac{1}{2}…frac{1}{2};frac{3}{2}…frac{3}{2};frac{4}{e^{2x}}right) = sumlimits_{n=0}^inftyfrac{1}{e^{2xn}(2n+1)^{m+1}},$$displaystyle = frac{e^x}{m!} sumlimits_{v=0}^m {binom m v }(-x)^{m-v} intlimits_x^inftyfrac{t^v~dt}{sqrt{e^{2t}-4}},$ . Perhaps exists literature about $displaystyle intlimits_z^infty t^asqrt{frac{t}{e^t-1}}dt,$ which could help.
$endgroup$
– user90369
Jan 28 at 12:58