pdf of transformed variable
$begingroup$
Given pdf $f_X(x)=frac{x+2}{18}$ where $-2 < x < 4$, I wanted to find another r.v. $Y = frac{12}{|X|}$. I think the support of $Y$ would be $3 < y < infty$ but I wasn't super sure. I found the cdf of $X$, which was $F_X(x) = int_{-2}^xfrac{x+2}{18}dx=frac{x^2}{36}+frac{x}{9}+frac{1}{9}$, $-2 < x < 4$. I tried using the cdf of $X$ to find the cdf of $Y$ and consequently find the pdf of $Y$ but have been struggling to do so. Could anyone help me with the derivation?
begin{align*}
F_Y(y)&=P(Y leq y) \
&=P(frac{12}{|X|}leq y) \
&= P(|X| geq frac{12}{y}) \
&= 1 - P(|X| leq frac{12}{y})\
&=1- P(-frac{12}{y} leq X leq frac{12}{y}) \
&= 1 - F_X(frac{12}{y}) + F_X(-frac{12}{y})\
&= 1 - frac{8}{3y}
end{align*}
Then I just differentiate to get the pdf:
begin{align*}
f_Y(y)&=frac{d}{dy}F_Y(y) \
&= frac{8}{3y^2}
end{align*}
But this pdf doesn't integrate to $1$ so I'm not sure what's wrong.
probability probability-theory probability-distributions density-function
$endgroup$
add a comment |
$begingroup$
Given pdf $f_X(x)=frac{x+2}{18}$ where $-2 < x < 4$, I wanted to find another r.v. $Y = frac{12}{|X|}$. I think the support of $Y$ would be $3 < y < infty$ but I wasn't super sure. I found the cdf of $X$, which was $F_X(x) = int_{-2}^xfrac{x+2}{18}dx=frac{x^2}{36}+frac{x}{9}+frac{1}{9}$, $-2 < x < 4$. I tried using the cdf of $X$ to find the cdf of $Y$ and consequently find the pdf of $Y$ but have been struggling to do so. Could anyone help me with the derivation?
begin{align*}
F_Y(y)&=P(Y leq y) \
&=P(frac{12}{|X|}leq y) \
&= P(|X| geq frac{12}{y}) \
&= 1 - P(|X| leq frac{12}{y})\
&=1- P(-frac{12}{y} leq X leq frac{12}{y}) \
&= 1 - F_X(frac{12}{y}) + F_X(-frac{12}{y})\
&= 1 - frac{8}{3y}
end{align*}
Then I just differentiate to get the pdf:
begin{align*}
f_Y(y)&=frac{d}{dy}F_Y(y) \
&= frac{8}{3y^2}
end{align*}
But this pdf doesn't integrate to $1$ so I'm not sure what's wrong.
probability probability-theory probability-distributions density-function
$endgroup$
add a comment |
$begingroup$
Given pdf $f_X(x)=frac{x+2}{18}$ where $-2 < x < 4$, I wanted to find another r.v. $Y = frac{12}{|X|}$. I think the support of $Y$ would be $3 < y < infty$ but I wasn't super sure. I found the cdf of $X$, which was $F_X(x) = int_{-2}^xfrac{x+2}{18}dx=frac{x^2}{36}+frac{x}{9}+frac{1}{9}$, $-2 < x < 4$. I tried using the cdf of $X$ to find the cdf of $Y$ and consequently find the pdf of $Y$ but have been struggling to do so. Could anyone help me with the derivation?
begin{align*}
F_Y(y)&=P(Y leq y) \
&=P(frac{12}{|X|}leq y) \
&= P(|X| geq frac{12}{y}) \
&= 1 - P(|X| leq frac{12}{y})\
&=1- P(-frac{12}{y} leq X leq frac{12}{y}) \
&= 1 - F_X(frac{12}{y}) + F_X(-frac{12}{y})\
&= 1 - frac{8}{3y}
end{align*}
Then I just differentiate to get the pdf:
begin{align*}
f_Y(y)&=frac{d}{dy}F_Y(y) \
&= frac{8}{3y^2}
end{align*}
But this pdf doesn't integrate to $1$ so I'm not sure what's wrong.
probability probability-theory probability-distributions density-function
$endgroup$
Given pdf $f_X(x)=frac{x+2}{18}$ where $-2 < x < 4$, I wanted to find another r.v. $Y = frac{12}{|X|}$. I think the support of $Y$ would be $3 < y < infty$ but I wasn't super sure. I found the cdf of $X$, which was $F_X(x) = int_{-2}^xfrac{x+2}{18}dx=frac{x^2}{36}+frac{x}{9}+frac{1}{9}$, $-2 < x < 4$. I tried using the cdf of $X$ to find the cdf of $Y$ and consequently find the pdf of $Y$ but have been struggling to do so. Could anyone help me with the derivation?
begin{align*}
F_Y(y)&=P(Y leq y) \
&=P(frac{12}{|X|}leq y) \
&= P(|X| geq frac{12}{y}) \
&= 1 - P(|X| leq frac{12}{y})\
&=1- P(-frac{12}{y} leq X leq frac{12}{y}) \
&= 1 - F_X(frac{12}{y}) + F_X(-frac{12}{y})\
&= 1 - frac{8}{3y}
end{align*}
Then I just differentiate to get the pdf:
begin{align*}
f_Y(y)&=frac{d}{dy}F_Y(y) \
&= frac{8}{3y^2}
end{align*}
But this pdf doesn't integrate to $1$ so I'm not sure what's wrong.
probability probability-theory probability-distributions density-function
probability probability-theory probability-distributions density-function
asked Jan 25 at 1:15
Michael JacksonMichael Jackson
82
82
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Take care with the absolute signage and the supports for the functions.
Note that $12/lvert Xrvert$ folds both the domains $(-2;0)$ and $(0;2)$ onto $(6;infty)$, and the domain $[2;4)$ onto $(3;6]$.
More clearly, only when $Y>6$ it is mapped to by a positive and negative value for $X$. When $3<Yleq 6$ then $Y$ is mapped to by only a positive value of $X$ (on $[2;4)$).
$$begin{split}mathsf P(Yleq y) &=mathsf P(lvert Xrvertleq 12/y)mathbf 1_{6<y}+mathsf P(lvert Xrvertleq 12/y)mathbf 1_{3<yleq 6}\ &= mathsf P(-12/yleq Xleq 12/y)mathbf 1_{6<y}+mathsf P(0leq Xleq 12/y)mathbf 1_{3<yleq 6}\ &= -F_X(-12/y)mathbf 1_{6<y}-F_X(0)mathbf 1_{3<yleq 6}+F_X(12/y)mathbf 1_{3<y}end{split}$$
So
$$begin{split}f_Y(y)&=begin{vmatrix}dfrac{partial (-12/y)}{partial y}end{vmatrix}f_X(-12/y)mathbf 1_{yin(6;infty)}+begin{vmatrix}dfrac{partial (12/y)}{partial y}end{vmatrix}f_X(12/y)mathbf 1_{yin(3;infty)}\ &=dfrac{(-24+4y)}{3y^3}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<y}\ &= dfrac{8}{3y^2}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<yleq 6}end{split}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086587%2fpdf-of-transformed-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take care with the absolute signage and the supports for the functions.
Note that $12/lvert Xrvert$ folds both the domains $(-2;0)$ and $(0;2)$ onto $(6;infty)$, and the domain $[2;4)$ onto $(3;6]$.
More clearly, only when $Y>6$ it is mapped to by a positive and negative value for $X$. When $3<Yleq 6$ then $Y$ is mapped to by only a positive value of $X$ (on $[2;4)$).
$$begin{split}mathsf P(Yleq y) &=mathsf P(lvert Xrvertleq 12/y)mathbf 1_{6<y}+mathsf P(lvert Xrvertleq 12/y)mathbf 1_{3<yleq 6}\ &= mathsf P(-12/yleq Xleq 12/y)mathbf 1_{6<y}+mathsf P(0leq Xleq 12/y)mathbf 1_{3<yleq 6}\ &= -F_X(-12/y)mathbf 1_{6<y}-F_X(0)mathbf 1_{3<yleq 6}+F_X(12/y)mathbf 1_{3<y}end{split}$$
So
$$begin{split}f_Y(y)&=begin{vmatrix}dfrac{partial (-12/y)}{partial y}end{vmatrix}f_X(-12/y)mathbf 1_{yin(6;infty)}+begin{vmatrix}dfrac{partial (12/y)}{partial y}end{vmatrix}f_X(12/y)mathbf 1_{yin(3;infty)}\ &=dfrac{(-24+4y)}{3y^3}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<y}\ &= dfrac{8}{3y^2}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<yleq 6}end{split}$$
$endgroup$
add a comment |
$begingroup$
Take care with the absolute signage and the supports for the functions.
Note that $12/lvert Xrvert$ folds both the domains $(-2;0)$ and $(0;2)$ onto $(6;infty)$, and the domain $[2;4)$ onto $(3;6]$.
More clearly, only when $Y>6$ it is mapped to by a positive and negative value for $X$. When $3<Yleq 6$ then $Y$ is mapped to by only a positive value of $X$ (on $[2;4)$).
$$begin{split}mathsf P(Yleq y) &=mathsf P(lvert Xrvertleq 12/y)mathbf 1_{6<y}+mathsf P(lvert Xrvertleq 12/y)mathbf 1_{3<yleq 6}\ &= mathsf P(-12/yleq Xleq 12/y)mathbf 1_{6<y}+mathsf P(0leq Xleq 12/y)mathbf 1_{3<yleq 6}\ &= -F_X(-12/y)mathbf 1_{6<y}-F_X(0)mathbf 1_{3<yleq 6}+F_X(12/y)mathbf 1_{3<y}end{split}$$
So
$$begin{split}f_Y(y)&=begin{vmatrix}dfrac{partial (-12/y)}{partial y}end{vmatrix}f_X(-12/y)mathbf 1_{yin(6;infty)}+begin{vmatrix}dfrac{partial (12/y)}{partial y}end{vmatrix}f_X(12/y)mathbf 1_{yin(3;infty)}\ &=dfrac{(-24+4y)}{3y^3}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<y}\ &= dfrac{8}{3y^2}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<yleq 6}end{split}$$
$endgroup$
add a comment |
$begingroup$
Take care with the absolute signage and the supports for the functions.
Note that $12/lvert Xrvert$ folds both the domains $(-2;0)$ and $(0;2)$ onto $(6;infty)$, and the domain $[2;4)$ onto $(3;6]$.
More clearly, only when $Y>6$ it is mapped to by a positive and negative value for $X$. When $3<Yleq 6$ then $Y$ is mapped to by only a positive value of $X$ (on $[2;4)$).
$$begin{split}mathsf P(Yleq y) &=mathsf P(lvert Xrvertleq 12/y)mathbf 1_{6<y}+mathsf P(lvert Xrvertleq 12/y)mathbf 1_{3<yleq 6}\ &= mathsf P(-12/yleq Xleq 12/y)mathbf 1_{6<y}+mathsf P(0leq Xleq 12/y)mathbf 1_{3<yleq 6}\ &= -F_X(-12/y)mathbf 1_{6<y}-F_X(0)mathbf 1_{3<yleq 6}+F_X(12/y)mathbf 1_{3<y}end{split}$$
So
$$begin{split}f_Y(y)&=begin{vmatrix}dfrac{partial (-12/y)}{partial y}end{vmatrix}f_X(-12/y)mathbf 1_{yin(6;infty)}+begin{vmatrix}dfrac{partial (12/y)}{partial y}end{vmatrix}f_X(12/y)mathbf 1_{yin(3;infty)}\ &=dfrac{(-24+4y)}{3y^3}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<y}\ &= dfrac{8}{3y^2}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<yleq 6}end{split}$$
$endgroup$
Take care with the absolute signage and the supports for the functions.
Note that $12/lvert Xrvert$ folds both the domains $(-2;0)$ and $(0;2)$ onto $(6;infty)$, and the domain $[2;4)$ onto $(3;6]$.
More clearly, only when $Y>6$ it is mapped to by a positive and negative value for $X$. When $3<Yleq 6$ then $Y$ is mapped to by only a positive value of $X$ (on $[2;4)$).
$$begin{split}mathsf P(Yleq y) &=mathsf P(lvert Xrvertleq 12/y)mathbf 1_{6<y}+mathsf P(lvert Xrvertleq 12/y)mathbf 1_{3<yleq 6}\ &= mathsf P(-12/yleq Xleq 12/y)mathbf 1_{6<y}+mathsf P(0leq Xleq 12/y)mathbf 1_{3<yleq 6}\ &= -F_X(-12/y)mathbf 1_{6<y}-F_X(0)mathbf 1_{3<yleq 6}+F_X(12/y)mathbf 1_{3<y}end{split}$$
So
$$begin{split}f_Y(y)&=begin{vmatrix}dfrac{partial (-12/y)}{partial y}end{vmatrix}f_X(-12/y)mathbf 1_{yin(6;infty)}+begin{vmatrix}dfrac{partial (12/y)}{partial y}end{vmatrix}f_X(12/y)mathbf 1_{yin(3;infty)}\ &=dfrac{(-24+4y)}{3y^3}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<y}\ &= dfrac{8}{3y^2}mathbf 1_{6<y}+dfrac{(24+4y)}{3y^3}mathbf 1_{3<yleq 6}end{split}$$
edited Jan 25 at 3:21
answered Jan 25 at 3:04


Graham KempGraham Kemp
86.8k43579
86.8k43579
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086587%2fpdf-of-transformed-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown