Quotient of two ideals equality
$begingroup$
I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:
$ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $
ring-theory
$endgroup$
add a comment |
$begingroup$
I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:
$ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $
ring-theory
$endgroup$
add a comment |
$begingroup$
I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:
$ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $
ring-theory
$endgroup$
I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:
$ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $
ring-theory
ring-theory
asked Jan 23 at 23:52


PsylexPsylex
1068
1068
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have that:
$$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$
Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$
$endgroup$
$begingroup$
Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
$endgroup$
– Psylex
Jan 24 at 9:21
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085248%2fquotient-of-two-ideals-equality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have that:
$$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$
Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$
$endgroup$
$begingroup$
Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
$endgroup$
– Psylex
Jan 24 at 9:21
add a comment |
$begingroup$
We have that:
$$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$
Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$
$endgroup$
$begingroup$
Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
$endgroup$
– Psylex
Jan 24 at 9:21
add a comment |
$begingroup$
We have that:
$$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$
Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$
$endgroup$
We have that:
$$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$
Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$
answered Jan 23 at 23:55


Stefan4024Stefan4024
30.6k63479
30.6k63479
$begingroup$
Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
$endgroup$
– Psylex
Jan 24 at 9:21
add a comment |
$begingroup$
Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
$endgroup$
– Psylex
Jan 24 at 9:21
$begingroup$
Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
$endgroup$
– Psylex
Jan 24 at 9:21
$begingroup$
Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
$endgroup$
– Psylex
Jan 24 at 9:21
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085248%2fquotient-of-two-ideals-equality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown