Quotient of two ideals equality












0












$begingroup$


I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:



$ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:



    $ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:



      $ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $










      share|cite|improve this question









      $endgroup$




      I was following a sequence of ring isomorphisms, sorry about that but I cannot figure out why in the last step we have:



      $ (x^2+ 1, 1+x) / (1+x) = ( 2) $ in the ring $ mathbb{Z} [X] / (1+x) $







      ring-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 23 at 23:52









      PsylexPsylex

      1068




      1068






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          We have that:



          $$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$



          Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
            $endgroup$
            – Psylex
            Jan 24 at 9:21













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085248%2fquotient-of-two-ideals-equality%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          We have that:



          $$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$



          Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
            $endgroup$
            – Psylex
            Jan 24 at 9:21


















          3












          $begingroup$

          We have that:



          $$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$



          Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
            $endgroup$
            – Psylex
            Jan 24 at 9:21
















          3












          3








          3





          $begingroup$

          We have that:



          $$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$



          Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$






          share|cite|improve this answer









          $endgroup$



          We have that:



          $$x^2 + 1 = x(x+1) - x + 1 = x(x+1) - (x+1) + 2$$



          Thus in $mathbb{Z}[x]/(x+1)$ we have that $x^2 + 1 = 2$, so $(x^2 + 1) + I = 2 + I$, where $I = langle 1+x rangle$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 23 at 23:55









          Stefan4024Stefan4024

          30.6k63479




          30.6k63479












          • $begingroup$
            Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
            $endgroup$
            – Psylex
            Jan 24 at 9:21




















          • $begingroup$
            Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
            $endgroup$
            – Psylex
            Jan 24 at 9:21


















          $begingroup$
          Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
          $endgroup$
          – Psylex
          Jan 24 at 9:21






          $begingroup$
          Thanks. So when i consider the map $ Phi: mathbb{Z} [X] / (X+1) rightarrow mathbb{Z} : : $newline $ pi (P) mapsto pi ( P(-1)) $ then we would get $ Phi( (x^2 + 1) + (x+1)) = Phi( (2) + (1+x)) = (2) $ hence $ mathbb{Z} [X] / (X+1) cong mathbb{Z} / (2) $ if i am not mistaken
          $endgroup$
          – Psylex
          Jan 24 at 9:21




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085248%2fquotient-of-two-ideals-equality%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith