rolling_corr returns values > 1
I have a time series DataFrame which I would like to apply rolling_corr function with window = 3, but I found the some of the results were > 1. I guess it was due to the small changes in original values. Are there any workaround without modifying the original dataset?
Index TA sn
2015-09-23 22:30:00 4923.866489 102730.000000
2015-09-23 22:35:00 4928.549856 102730.000000
2015-09-23 22:40:00 4933.126237 102730.000000
2015-09-23 22:45:00 4932.423757 102730.000000
2015-09-23 22:50:00 4930.632884 102730.000000
2015-09-23 22:55:00 4932.184794 102940.000000
2015-09-23 23:00:00 4925.654600 102840.000000
2015-09-24 09:00:00 4914.802897 102675.000000
2015-09-24 09:05:00 4897.657917 102477.142857
2015-09-24 09:10:00 4895.178979 102303.333333
2015-09-24 09:15:00 4893.134804 102435.000000
2015-09-24 09:20:00 4899.745662 102440.000000
2015-09-24 09:25:00 4902.197101 102500.000000
2015-09-24 09:30:00 4900.230251 102490.000000
2015-09-24 09:35:00 4895.271591 102600.000000
2015-09-24 09:40:00 4891.941444 102550.000000
2015-09-24 09:45:00 4885.363355 102550.000000
2015-09-24 09:50:00 4882.384047 102550.000000
2015-09-24 09:55:00 4884.698022 102550.000000
2015-09-24 10:00:00 4884.919459 102550.000000
2015-09-24 10:05:00 4882.617120 102550.000000
2015-09-24 10:10:00 4882.752606 102550.000000
2015-09-24 10:15:00 4883.183232 102550.000000
and the output:
Index rolling_corr
2015-09-23 22:30:00
2015-09-23 22:35:00
2015-09-23 22:40:00 -inf
2015-09-23 22:45:00 inf
2015-09-23 22:50:00 inf
2015-09-23 22:55:00 0.389793929698
2015-09-23 23:00:00 0.200596075192
2015-09-24 09:00:00 0.999998215741
2015-09-24 09:05:00 0.997050258267
2015-09-24 09:10:00 0.932322658978
2015-09-24 09:15:00 0.285942864418
2015-09-24 09:20:00 0.246531134353
2015-09-24 09:25:00 0.756098005938
2015-09-24 09:30:00 0.762718525006
2015-09-24 09:35:00 -0.935380177853
2015-09-24 09:40:00 -0.635755535941
2015-09-24 09:45:00 0.75794248422
2015-09-24 09:50:00 0.000867697788219
2015-09-24 09:55:00 0.00203505802058
2015-09-24 10:00:00 0.00151086403735
2015-09-24 10:05:00 0.00167037819182
2015-09-24 10:10:00 0.0
2015-09-24 10:15:00 0.0
Update: taking larger window size could avoid the problem but I still wonder the cause and effect of the issue.
pandas rolling-computation
add a comment |
I have a time series DataFrame which I would like to apply rolling_corr function with window = 3, but I found the some of the results were > 1. I guess it was due to the small changes in original values. Are there any workaround without modifying the original dataset?
Index TA sn
2015-09-23 22:30:00 4923.866489 102730.000000
2015-09-23 22:35:00 4928.549856 102730.000000
2015-09-23 22:40:00 4933.126237 102730.000000
2015-09-23 22:45:00 4932.423757 102730.000000
2015-09-23 22:50:00 4930.632884 102730.000000
2015-09-23 22:55:00 4932.184794 102940.000000
2015-09-23 23:00:00 4925.654600 102840.000000
2015-09-24 09:00:00 4914.802897 102675.000000
2015-09-24 09:05:00 4897.657917 102477.142857
2015-09-24 09:10:00 4895.178979 102303.333333
2015-09-24 09:15:00 4893.134804 102435.000000
2015-09-24 09:20:00 4899.745662 102440.000000
2015-09-24 09:25:00 4902.197101 102500.000000
2015-09-24 09:30:00 4900.230251 102490.000000
2015-09-24 09:35:00 4895.271591 102600.000000
2015-09-24 09:40:00 4891.941444 102550.000000
2015-09-24 09:45:00 4885.363355 102550.000000
2015-09-24 09:50:00 4882.384047 102550.000000
2015-09-24 09:55:00 4884.698022 102550.000000
2015-09-24 10:00:00 4884.919459 102550.000000
2015-09-24 10:05:00 4882.617120 102550.000000
2015-09-24 10:10:00 4882.752606 102550.000000
2015-09-24 10:15:00 4883.183232 102550.000000
and the output:
Index rolling_corr
2015-09-23 22:30:00
2015-09-23 22:35:00
2015-09-23 22:40:00 -inf
2015-09-23 22:45:00 inf
2015-09-23 22:50:00 inf
2015-09-23 22:55:00 0.389793929698
2015-09-23 23:00:00 0.200596075192
2015-09-24 09:00:00 0.999998215741
2015-09-24 09:05:00 0.997050258267
2015-09-24 09:10:00 0.932322658978
2015-09-24 09:15:00 0.285942864418
2015-09-24 09:20:00 0.246531134353
2015-09-24 09:25:00 0.756098005938
2015-09-24 09:30:00 0.762718525006
2015-09-24 09:35:00 -0.935380177853
2015-09-24 09:40:00 -0.635755535941
2015-09-24 09:45:00 0.75794248422
2015-09-24 09:50:00 0.000867697788219
2015-09-24 09:55:00 0.00203505802058
2015-09-24 10:00:00 0.00151086403735
2015-09-24 10:05:00 0.00167037819182
2015-09-24 10:10:00 0.0
2015-09-24 10:15:00 0.0
Update: taking larger window size could avoid the problem but I still wonder the cause and effect of the issue.
pandas rolling-computation
add a comment |
I have a time series DataFrame which I would like to apply rolling_corr function with window = 3, but I found the some of the results were > 1. I guess it was due to the small changes in original values. Are there any workaround without modifying the original dataset?
Index TA sn
2015-09-23 22:30:00 4923.866489 102730.000000
2015-09-23 22:35:00 4928.549856 102730.000000
2015-09-23 22:40:00 4933.126237 102730.000000
2015-09-23 22:45:00 4932.423757 102730.000000
2015-09-23 22:50:00 4930.632884 102730.000000
2015-09-23 22:55:00 4932.184794 102940.000000
2015-09-23 23:00:00 4925.654600 102840.000000
2015-09-24 09:00:00 4914.802897 102675.000000
2015-09-24 09:05:00 4897.657917 102477.142857
2015-09-24 09:10:00 4895.178979 102303.333333
2015-09-24 09:15:00 4893.134804 102435.000000
2015-09-24 09:20:00 4899.745662 102440.000000
2015-09-24 09:25:00 4902.197101 102500.000000
2015-09-24 09:30:00 4900.230251 102490.000000
2015-09-24 09:35:00 4895.271591 102600.000000
2015-09-24 09:40:00 4891.941444 102550.000000
2015-09-24 09:45:00 4885.363355 102550.000000
2015-09-24 09:50:00 4882.384047 102550.000000
2015-09-24 09:55:00 4884.698022 102550.000000
2015-09-24 10:00:00 4884.919459 102550.000000
2015-09-24 10:05:00 4882.617120 102550.000000
2015-09-24 10:10:00 4882.752606 102550.000000
2015-09-24 10:15:00 4883.183232 102550.000000
and the output:
Index rolling_corr
2015-09-23 22:30:00
2015-09-23 22:35:00
2015-09-23 22:40:00 -inf
2015-09-23 22:45:00 inf
2015-09-23 22:50:00 inf
2015-09-23 22:55:00 0.389793929698
2015-09-23 23:00:00 0.200596075192
2015-09-24 09:00:00 0.999998215741
2015-09-24 09:05:00 0.997050258267
2015-09-24 09:10:00 0.932322658978
2015-09-24 09:15:00 0.285942864418
2015-09-24 09:20:00 0.246531134353
2015-09-24 09:25:00 0.756098005938
2015-09-24 09:30:00 0.762718525006
2015-09-24 09:35:00 -0.935380177853
2015-09-24 09:40:00 -0.635755535941
2015-09-24 09:45:00 0.75794248422
2015-09-24 09:50:00 0.000867697788219
2015-09-24 09:55:00 0.00203505802058
2015-09-24 10:00:00 0.00151086403735
2015-09-24 10:05:00 0.00167037819182
2015-09-24 10:10:00 0.0
2015-09-24 10:15:00 0.0
Update: taking larger window size could avoid the problem but I still wonder the cause and effect of the issue.
pandas rolling-computation
I have a time series DataFrame which I would like to apply rolling_corr function with window = 3, but I found the some of the results were > 1. I guess it was due to the small changes in original values. Are there any workaround without modifying the original dataset?
Index TA sn
2015-09-23 22:30:00 4923.866489 102730.000000
2015-09-23 22:35:00 4928.549856 102730.000000
2015-09-23 22:40:00 4933.126237 102730.000000
2015-09-23 22:45:00 4932.423757 102730.000000
2015-09-23 22:50:00 4930.632884 102730.000000
2015-09-23 22:55:00 4932.184794 102940.000000
2015-09-23 23:00:00 4925.654600 102840.000000
2015-09-24 09:00:00 4914.802897 102675.000000
2015-09-24 09:05:00 4897.657917 102477.142857
2015-09-24 09:10:00 4895.178979 102303.333333
2015-09-24 09:15:00 4893.134804 102435.000000
2015-09-24 09:20:00 4899.745662 102440.000000
2015-09-24 09:25:00 4902.197101 102500.000000
2015-09-24 09:30:00 4900.230251 102490.000000
2015-09-24 09:35:00 4895.271591 102600.000000
2015-09-24 09:40:00 4891.941444 102550.000000
2015-09-24 09:45:00 4885.363355 102550.000000
2015-09-24 09:50:00 4882.384047 102550.000000
2015-09-24 09:55:00 4884.698022 102550.000000
2015-09-24 10:00:00 4884.919459 102550.000000
2015-09-24 10:05:00 4882.617120 102550.000000
2015-09-24 10:10:00 4882.752606 102550.000000
2015-09-24 10:15:00 4883.183232 102550.000000
and the output:
Index rolling_corr
2015-09-23 22:30:00
2015-09-23 22:35:00
2015-09-23 22:40:00 -inf
2015-09-23 22:45:00 inf
2015-09-23 22:50:00 inf
2015-09-23 22:55:00 0.389793929698
2015-09-23 23:00:00 0.200596075192
2015-09-24 09:00:00 0.999998215741
2015-09-24 09:05:00 0.997050258267
2015-09-24 09:10:00 0.932322658978
2015-09-24 09:15:00 0.285942864418
2015-09-24 09:20:00 0.246531134353
2015-09-24 09:25:00 0.756098005938
2015-09-24 09:30:00 0.762718525006
2015-09-24 09:35:00 -0.935380177853
2015-09-24 09:40:00 -0.635755535941
2015-09-24 09:45:00 0.75794248422
2015-09-24 09:50:00 0.000867697788219
2015-09-24 09:55:00 0.00203505802058
2015-09-24 10:00:00 0.00151086403735
2015-09-24 10:05:00 0.00167037819182
2015-09-24 10:10:00 0.0
2015-09-24 10:15:00 0.0
Update: taking larger window size could avoid the problem but I still wonder the cause and effect of the issue.
pandas rolling-computation
pandas rolling-computation
edited Jan 2 at 4:14
Bohua
asked Jan 2 at 3:01
BohuaBohua
63
63
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54000764%2frolling-corr-returns-values-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54000764%2frolling-corr-returns-values-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown