Showing a conditional statement is a tautology without using a truth table.












2












$begingroup$


I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



[(p→q)∧(q→r)] → (p→r)



=> ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



=> [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



=> [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



I can't seem to figure out what comes after this step. Can someone help me?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



    [(p→q)∧(q→r)] → (p→r)



    => ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



    => [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



    => [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



    I can't seem to figure out what comes after this step. Can someone help me?










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      1



      $begingroup$


      I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



      [(p→q)∧(q→r)] → (p→r)



      => ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



      => [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



      => [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



      I can't seem to figure out what comes after this step. Can someone help me?










      share|cite|improve this question









      $endgroup$




      I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



      [(p→q)∧(q→r)] → (p→r)



      => ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



      => [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



      => [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



      I can't seem to figure out what comes after this step. Can someone help me?







      discrete-mathematics proof-verification logic






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 24 at 23:10









      NevNev

      305




      305






















          4 Answers
          4






          active

          oldest

          votes


















          1












          $begingroup$

          Notice that



          $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



          is one big disjunction, so you can drop parentheses:



          $ (p land neg q) lor (qland neg r) lor neg plor r$



          Now, if you have:



          Reduction



          $p lor (neg p land q) equiv p lor q$



          then you can apply that:



          $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



          $neg q lor q lor neg p lor r equiv$



          $top lor neg p lor r equiv$



          $top$



          But if you don't have Reduction:



          $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



          $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



          $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



          $neg q lor neg p lor q lor r$



          $top lor neg p lor r equiv$



          $top$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much, makes a lot of sense now
            $endgroup$
            – Nev
            Jan 25 at 2:02










          • $begingroup$
            @nev you're welcome!
            $endgroup$
            – Bram28
            Jan 25 at 2:13



















          1












          $begingroup$

          Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
          begin{align*}
          &(p wedge neg q) vee (q wedge neg r)\
          &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
          &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
          &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
          &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
          end{align*}

          Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



          So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
          begin{align*}
          &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
          end{align*}

          Again both halves of this can be manipulated to get $top$.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$


            I can't seem to figure out what comes after this step. Can someone help me?




            Yes.



            $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
            \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              You can use Double Distribution to get
              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
              $q lor lnot q$ is a Tautology so this becomes
              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
              which by distribution is
              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
              Association gives
              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
              Distribution again gives
              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
              $q land lnot q$ is a contradiction so this becomes
              $$(lnot r land p)lor (lnot p lor r)$$
              Which by DeMorgan's Law is
              $$(lnot r land p)lor lnot(lnot r land p)$$
              Which is a tautology.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thanks for the help!!
                $endgroup$
                – Nev
                Jan 25 at 2:02











              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086499%2fshowing-a-conditional-statement-is-a-tautology-without-using-a-truth-table%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              4 Answers
              4






              active

              oldest

              votes








              4 Answers
              4






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                Jan 25 at 2:02










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                Jan 25 at 2:13
















              1












              $begingroup$

              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                Jan 25 at 2:02










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                Jan 25 at 2:13














              1












              1








              1





              $begingroup$

              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$






              share|cite|improve this answer









              $endgroup$



              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 25 at 1:23









              Bram28Bram28

              63.8k44793




              63.8k44793












              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                Jan 25 at 2:02










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                Jan 25 at 2:13


















              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                Jan 25 at 2:02










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                Jan 25 at 2:13
















              $begingroup$
              Thank you so much, makes a lot of sense now
              $endgroup$
              – Nev
              Jan 25 at 2:02




              $begingroup$
              Thank you so much, makes a lot of sense now
              $endgroup$
              – Nev
              Jan 25 at 2:02












              $begingroup$
              @nev you're welcome!
              $endgroup$
              – Bram28
              Jan 25 at 2:13




              $begingroup$
              @nev you're welcome!
              $endgroup$
              – Bram28
              Jan 25 at 2:13











              1












              $begingroup$

              Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
              begin{align*}
              &(p wedge neg q) vee (q wedge neg r)\
              &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
              &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
              &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
              &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
              end{align*}

              Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



              So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
              begin{align*}
              &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
              end{align*}

              Again both halves of this can be manipulated to get $top$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
                begin{align*}
                &(p wedge neg q) vee (q wedge neg r)\
                &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
                &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
                &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
                &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
                end{align*}

                Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



                So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
                begin{align*}
                &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
                end{align*}

                Again both halves of this can be manipulated to get $top$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
                  begin{align*}
                  &(p wedge neg q) vee (q wedge neg r)\
                  &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
                  &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
                  &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
                  &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
                  end{align*}

                  Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



                  So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
                  begin{align*}
                  &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
                  end{align*}

                  Again both halves of this can be manipulated to get $top$.






                  share|cite|improve this answer









                  $endgroup$



                  Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
                  begin{align*}
                  &(p wedge neg q) vee (q wedge neg r)\
                  &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
                  &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
                  &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
                  &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
                  end{align*}

                  Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



                  So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
                  begin{align*}
                  &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
                  end{align*}

                  Again both halves of this can be manipulated to get $top$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 24 at 23:41









                  kccukccu

                  10.6k11229




                  10.6k11229























                      1












                      $begingroup$


                      I can't seem to figure out what comes after this step. Can someone help me?




                      Yes.



                      $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                      \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$


                        I can't seem to figure out what comes after this step. Can someone help me?




                        Yes.



                        $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                        \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$


                          I can't seem to figure out what comes after this step. Can someone help me?




                          Yes.



                          $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                          \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






                          share|cite|improve this answer









                          $endgroup$




                          I can't seem to figure out what comes after this step. Can someone help me?




                          Yes.



                          $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                          \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 25 at 0:05









                          Graham KempGraham Kemp

                          86.8k43579




                          86.8k43579























                              1












                              $begingroup$

                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.






                              share|cite|improve this answer









                              $endgroup$













                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                Jan 25 at 2:02
















                              1












                              $begingroup$

                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.






                              share|cite|improve this answer









                              $endgroup$













                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                Jan 25 at 2:02














                              1












                              1








                              1





                              $begingroup$

                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.






                              share|cite|improve this answer









                              $endgroup$



                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 25 at 1:03









                              Erik ParkinsonErik Parkinson

                              1,17519




                              1,17519












                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                Jan 25 at 2:02


















                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                Jan 25 at 2:02
















                              $begingroup$
                              Thanks for the help!!
                              $endgroup$
                              – Nev
                              Jan 25 at 2:02




                              $begingroup$
                              Thanks for the help!!
                              $endgroup$
                              – Nev
                              Jan 25 at 2:02


















                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086499%2fshowing-a-conditional-statement-is-a-tautology-without-using-a-truth-table%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith