Showing monotonicity for ratio of binomial pmf and tail cdf












2












$begingroup$


I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$

I've verified using numerical simulations, but can't seem to get the algebra to work out.



Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.



Numerical Simulations



n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)

plot(x,ratio)
plot(x,diff)













share|cite|improve this question











$endgroup$












  • $begingroup$
    A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
    $endgroup$
    – pwerth
    Jan 23 at 21:40










  • $begingroup$
    Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
    $endgroup$
    – stats134711
    Jan 23 at 21:43
















2












$begingroup$


I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$

I've verified using numerical simulations, but can't seem to get the algebra to work out.



Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.



Numerical Simulations



n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)

plot(x,ratio)
plot(x,diff)













share|cite|improve this question











$endgroup$












  • $begingroup$
    A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
    $endgroup$
    – pwerth
    Jan 23 at 21:40










  • $begingroup$
    Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
    $endgroup$
    – stats134711
    Jan 23 at 21:43














2












2








2





$begingroup$


I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$

I've verified using numerical simulations, but can't seem to get the algebra to work out.



Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.



Numerical Simulations



n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)

plot(x,ratio)
plot(x,diff)













share|cite|improve this question











$endgroup$




I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$

I've verified using numerical simulations, but can't seem to get the algebra to work out.



Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.



Numerical Simulations



n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)

plot(x,ratio)
plot(x,diff)










inequality probability-distributions binomial-distribution monotone-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 2:51







stats134711

















asked Jan 23 at 21:34









stats134711stats134711

187215




187215












  • $begingroup$
    A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
    $endgroup$
    – pwerth
    Jan 23 at 21:40










  • $begingroup$
    Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
    $endgroup$
    – stats134711
    Jan 23 at 21:43


















  • $begingroup$
    A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
    $endgroup$
    – pwerth
    Jan 23 at 21:40










  • $begingroup$
    Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
    $endgroup$
    – stats134711
    Jan 23 at 21:43
















$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40




$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40












$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43




$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43










1 Answer
1






active

oldest

votes


















1












$begingroup$

We know that
$$
frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
$$

Therefore, we will show that
$$
frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
$$

Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
end{align}



Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
$$
frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
$$

and for $kgeq 1$
$$
frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
$$

Combining the last two results, we may write for $kgeq 0$
$$
binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
$$

Substituting this inequality for each binomial coefficient in the numerator of (1), we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
&leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
&leq frac{n-x}{x+1}
end{align}

as desired.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085109%2fshowing-monotonicity-for-ratio-of-binomial-pmf-and-tail-cdf%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    We know that
    $$
    frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
    $$

    Therefore, we will show that
    $$
    frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
    $$

    Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
    begin{align}
    frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
    &=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
    end{align}



    Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
    $$
    frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
    $$

    and for $kgeq 1$
    $$
    frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
    $$

    Combining the last two results, we may write for $kgeq 0$
    $$
    binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
    $$

    Substituting this inequality for each binomial coefficient in the numerator of (1), we have
    begin{align}
    frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
    &leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
    &leq frac{n-x}{x+1}
    end{align}

    as desired.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      We know that
      $$
      frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
      $$

      Therefore, we will show that
      $$
      frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
      $$

      Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
      begin{align}
      frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
      &=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
      end{align}



      Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
      $$
      frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
      $$

      and for $kgeq 1$
      $$
      frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
      $$

      Combining the last two results, we may write for $kgeq 0$
      $$
      binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
      $$

      Substituting this inequality for each binomial coefficient in the numerator of (1), we have
      begin{align}
      frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
      &leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
      &leq frac{n-x}{x+1}
      end{align}

      as desired.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        We know that
        $$
        frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
        $$

        Therefore, we will show that
        $$
        frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
        $$

        Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
        begin{align}
        frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
        &=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
        end{align}



        Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
        $$
        frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
        $$

        and for $kgeq 1$
        $$
        frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
        $$

        Combining the last two results, we may write for $kgeq 0$
        $$
        binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
        $$

        Substituting this inequality for each binomial coefficient in the numerator of (1), we have
        begin{align}
        frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
        &leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
        &leq frac{n-x}{x+1}
        end{align}

        as desired.






        share|cite|improve this answer











        $endgroup$



        We know that
        $$
        frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
        $$

        Therefore, we will show that
        $$
        frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
        $$

        Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
        begin{align}
        frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
        &=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
        end{align}



        Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
        $$
        frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
        $$

        and for $kgeq 1$
        $$
        frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
        $$

        Combining the last two results, we may write for $kgeq 0$
        $$
        binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
        $$

        Substituting this inequality for each binomial coefficient in the numerator of (1), we have
        begin{align}
        frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
        &leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
        &leq frac{n-x}{x+1}
        end{align}

        as desired.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 25 at 19:02

























        answered Jan 25 at 13:19









        stats134711stats134711

        187215




        187215






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085109%2fshowing-monotonicity-for-ratio-of-binomial-pmf-and-tail-cdf%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter