Showing monotonicity for ratio of binomial pmf and tail cdf
$begingroup$
I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$
I've verified using numerical simulations, but can't seem to get the algebra to work out.
Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.
Numerical Simulations
n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)
plot(x,ratio)
plot(x,diff)
inequality probability-distributions binomial-distribution monotone-functions
$endgroup$
add a comment |
$begingroup$
I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$
I've verified using numerical simulations, but can't seem to get the algebra to work out.
Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.
Numerical Simulations
n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)
plot(x,ratio)
plot(x,diff)
inequality probability-distributions binomial-distribution monotone-functions
$endgroup$
$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40
$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43
add a comment |
$begingroup$
I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$
I've verified using numerical simulations, but can't seem to get the algebra to work out.
Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.
Numerical Simulations
n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)
plot(x,ratio)
plot(x,diff)
inequality probability-distributions binomial-distribution monotone-functions
$endgroup$
I'm interested in showing for $Xsimtext{Bin}(n,p)$, $pin(0,1)$ that when $xgeq np$,
$$
frac{P(X=x)}{P(Xgeq x)}leq frac{P(X=x+1)}{P(Xgeq x+1)}
$$
I've verified using numerical simulations, but can't seem to get the algebra to work out.
Below I plot the ratio $P(X=x)/P(Xgeq x)$ for values of $xgeq lfloor nprfloor$. We can see that the ratio is increasing with $x$. Furthermore, I plot the difference between the ratio evaluated at $x+1$ (the right hand side above) and the ratio evaluated at $x$ (the left hand side above) for varying $x$. The difference is also positive, though the difference increases for $x$ close to $np$ and then decreases thereafter to zero.
Numerical Simulations
n=500
p=0.3
x=seq(floor(n*p),n)
ratio=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)
diff=dbinom(x,n,p)/pbinom(x-1,n,p,lower.tail = FALSE)-dbinom(x-1,n,p)/pbinom(x-2,n,p,lower.tail = FALSE)
plot(x,ratio)
plot(x,diff)
inequality probability-distributions binomial-distribution monotone-functions
inequality probability-distributions binomial-distribution monotone-functions
edited Jan 25 at 2:51
stats134711
asked Jan 23 at 21:34
stats134711stats134711
187215
187215
$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40
$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43
add a comment |
$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40
$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43
$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40
$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40
$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43
$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We know that
$$
frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
$$
Therefore, we will show that
$$
frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
$$
Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
end{align}
Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
$$
frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
$$
and for $kgeq 1$
$$
frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
$$
Combining the last two results, we may write for $kgeq 0$
$$
binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
$$
Substituting this inequality for each binomial coefficient in the numerator of (1), we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
&leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
&leq frac{n-x}{x+1}
end{align}
as desired.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085109%2fshowing-monotonicity-for-ratio-of-binomial-pmf-and-tail-cdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We know that
$$
frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
$$
Therefore, we will show that
$$
frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
$$
Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
end{align}
Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
$$
frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
$$
and for $kgeq 1$
$$
frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
$$
Combining the last two results, we may write for $kgeq 0$
$$
binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
$$
Substituting this inequality for each binomial coefficient in the numerator of (1), we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
&leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
&leq frac{n-x}{x+1}
end{align}
as desired.
$endgroup$
add a comment |
$begingroup$
We know that
$$
frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
$$
Therefore, we will show that
$$
frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
$$
Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
end{align}
Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
$$
frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
$$
and for $kgeq 1$
$$
frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
$$
Combining the last two results, we may write for $kgeq 0$
$$
binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
$$
Substituting this inequality for each binomial coefficient in the numerator of (1), we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
&leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
&leq frac{n-x}{x+1}
end{align}
as desired.
$endgroup$
add a comment |
$begingroup$
We know that
$$
frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
$$
Therefore, we will show that
$$
frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
$$
Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
end{align}
Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
$$
frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
$$
and for $kgeq 1$
$$
frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
$$
Combining the last two results, we may write for $kgeq 0$
$$
binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
$$
Substituting this inequality for each binomial coefficient in the numerator of (1), we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
&leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
&leq frac{n-x}{x+1}
end{align}
as desired.
$endgroup$
We know that
$$
frac{P(X=x+1)}{P(X=x)}=frac{n-x}{x+1}frac{p}{1-p}
$$
Therefore, we will show that
$$
frac{P(Xgeq x+1)}{P(Xgeq x)}leq frac{n-x}{x+1}frac{p}{1-p}
$$
Multiplying the left hand side by $(1-p)/p$ and expanding out the numerator and denominator on the left hand side we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{1-p}{p}frac{sum_{kgeq x+1}dbinom{n}{k}p^k(1-p)^{n-k}}{sum_{kgeq x}dbinom{n}{k}p^k(1-p)^{n-k}}\
&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}tag{1}
end{align}
Note that the numerator has $n-x$ terms while the denominator has $n-x+1$ terms. Now we examine ratios of successive binomial coefficients. Note that
$$
frac{binom{n}{x+1}}{binom{n}{x}}=frac{n-x}{x+1}
$$
and for $kgeq 1$
$$
frac{binom{n}{x+1+k}}{binom{n}{x+k}}=frac{n-x-k}{x+1+k}leq frac{n-x}{x+1}
$$
Combining the last two results, we may write for $kgeq 0$
$$
binom{n}{x+1+k}leq frac{n-x}{x+1}binom{n}{x+k}
$$
Substituting this inequality for each binomial coefficient in the numerator of (1), we have
begin{align}
frac{1-p}{p}frac{P(Xgeq x+1)}{P(Xgeq x)}&=frac{binom{n}{x+1}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+2}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+3}p^{x+3}(1-p)^{n-x-3}+cdots}{binom{n}{x}p^{x+1}(1-p)^{n-x-1}+binom{n}{x+1}p^{x+2}(1-p)^{n-x-2}+binom{n}{x+2}p^{x+3}(1-p)^{n-x-3}+cdots}\
&leq frac{n-x}{x+1}frac{sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k} }{left[sum_{k=x+1}^n binom{n}{k-1}p^k(1-p)^{n-k}right] +p^{n+1}(1-p)^{-1} }\
&leq frac{n-x}{x+1}
end{align}
as desired.
edited Jan 25 at 19:02
answered Jan 25 at 13:19
stats134711stats134711
187215
187215
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085109%2fshowing-monotonicity-for-ratio-of-binomial-pmf-and-tail-cdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
A good place to start would be writing the actual values for $P(X=x),P(X=x+1),P(Xgeq x),P(Xgeq x+1)$ so you know what you're trying to prove. Can you do this?
$endgroup$
– pwerth
Jan 23 at 21:40
$begingroup$
Yes, I've done that as well. Using just brute force algebra (splitting up components, etc.) didn't yield me much.
$endgroup$
– stats134711
Jan 23 at 21:43