Solve the recurrence relation $a_n=2a_{n-1}+15a_{n-2}+8$ for $ngeq2$, $a_0=0$, $a_1=1$












1












$begingroup$


My task:
$a_n=2a_{n-1}+15a_{n-2}+8$ for $ngeq2$, $a_0=0$, $a_1=1$



My solution
$x^{2}-2x-15$



$Delta=64$



$x1=-3 $



$x2=5$



So I am gonna use following formula:
$a_n=ar^{n}+br^{n}$



$a_n=a*(-3)^{n}+b*5^{n}$



$+8$ is the problem, so I am looking for $c$ that $b_n:=a_n+cimplies b_n=2b_{n-1}+15b_{n-2}$



$$b_n=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c$$ I am setting $c=frac{1}{2}$ so



$$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a*(-3)^{n}+b*5^{n}.$$From $b_0=frac{1}{2},,b_1=-frac{1}{2}$, after finding $a,,b$. Then $a_n=b_n-frac{1}{2}$.



$$a=frac{3}{8}$$
$$b=frac{1}{8}$$
$b_2=frac{52}{8}$



$a_2=frac{52}{8}-frac{1}{2}=6$



Actual $a_2=10, a_3$=43



So $a_2$ from $b_n$ method is not equal to actual $a_n$.



It means I am doing something wrong here, could anyone point out the mistake?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    check your $a,b$ again. Does not hold when $n=1.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:23






  • 1




    $begingroup$
    now your $b_1$ is incorrect.
    $endgroup$
    – dezdichado
    Jan 27 at 19:43










  • $begingroup$
    @dezdichado how do I find $b_1$ then? I used method located in comments from this post:(link at the end) So I thought $b_1$ is the same as $b_0$ but with '$-$' math.stackexchange.com/questions/3089757/…
    $endgroup$
    – Gorosso
    Jan 27 at 19:47








  • 1




    $begingroup$
    $b_1 = a_1+frac 12 = frac 32.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:52






  • 2




    $begingroup$
    I think you should start with a solution that looks like $a r_1^n + b r_2^n + c$, where $r_1$ and $r_2$ are roots of your characteristic polynomial (which you have already computed).
    $endgroup$
    – Aditya Dua
    Jan 27 at 20:02
















1












$begingroup$


My task:
$a_n=2a_{n-1}+15a_{n-2}+8$ for $ngeq2$, $a_0=0$, $a_1=1$



My solution
$x^{2}-2x-15$



$Delta=64$



$x1=-3 $



$x2=5$



So I am gonna use following formula:
$a_n=ar^{n}+br^{n}$



$a_n=a*(-3)^{n}+b*5^{n}$



$+8$ is the problem, so I am looking for $c$ that $b_n:=a_n+cimplies b_n=2b_{n-1}+15b_{n-2}$



$$b_n=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c$$ I am setting $c=frac{1}{2}$ so



$$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a*(-3)^{n}+b*5^{n}.$$From $b_0=frac{1}{2},,b_1=-frac{1}{2}$, after finding $a,,b$. Then $a_n=b_n-frac{1}{2}$.



$$a=frac{3}{8}$$
$$b=frac{1}{8}$$
$b_2=frac{52}{8}$



$a_2=frac{52}{8}-frac{1}{2}=6$



Actual $a_2=10, a_3$=43



So $a_2$ from $b_n$ method is not equal to actual $a_n$.



It means I am doing something wrong here, could anyone point out the mistake?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    check your $a,b$ again. Does not hold when $n=1.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:23






  • 1




    $begingroup$
    now your $b_1$ is incorrect.
    $endgroup$
    – dezdichado
    Jan 27 at 19:43










  • $begingroup$
    @dezdichado how do I find $b_1$ then? I used method located in comments from this post:(link at the end) So I thought $b_1$ is the same as $b_0$ but with '$-$' math.stackexchange.com/questions/3089757/…
    $endgroup$
    – Gorosso
    Jan 27 at 19:47








  • 1




    $begingroup$
    $b_1 = a_1+frac 12 = frac 32.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:52






  • 2




    $begingroup$
    I think you should start with a solution that looks like $a r_1^n + b r_2^n + c$, where $r_1$ and $r_2$ are roots of your characteristic polynomial (which you have already computed).
    $endgroup$
    – Aditya Dua
    Jan 27 at 20:02














1












1








1


1



$begingroup$


My task:
$a_n=2a_{n-1}+15a_{n-2}+8$ for $ngeq2$, $a_0=0$, $a_1=1$



My solution
$x^{2}-2x-15$



$Delta=64$



$x1=-3 $



$x2=5$



So I am gonna use following formula:
$a_n=ar^{n}+br^{n}$



$a_n=a*(-3)^{n}+b*5^{n}$



$+8$ is the problem, so I am looking for $c$ that $b_n:=a_n+cimplies b_n=2b_{n-1}+15b_{n-2}$



$$b_n=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c$$ I am setting $c=frac{1}{2}$ so



$$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a*(-3)^{n}+b*5^{n}.$$From $b_0=frac{1}{2},,b_1=-frac{1}{2}$, after finding $a,,b$. Then $a_n=b_n-frac{1}{2}$.



$$a=frac{3}{8}$$
$$b=frac{1}{8}$$
$b_2=frac{52}{8}$



$a_2=frac{52}{8}-frac{1}{2}=6$



Actual $a_2=10, a_3$=43



So $a_2$ from $b_n$ method is not equal to actual $a_n$.



It means I am doing something wrong here, could anyone point out the mistake?










share|cite|improve this question











$endgroup$




My task:
$a_n=2a_{n-1}+15a_{n-2}+8$ for $ngeq2$, $a_0=0$, $a_1=1$



My solution
$x^{2}-2x-15$



$Delta=64$



$x1=-3 $



$x2=5$



So I am gonna use following formula:
$a_n=ar^{n}+br^{n}$



$a_n=a*(-3)^{n}+b*5^{n}$



$+8$ is the problem, so I am looking for $c$ that $b_n:=a_n+cimplies b_n=2b_{n-1}+15b_{n-2}$



$$b_n=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c$$ I am setting $c=frac{1}{2}$ so



$$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a*(-3)^{n}+b*5^{n}.$$From $b_0=frac{1}{2},,b_1=-frac{1}{2}$, after finding $a,,b$. Then $a_n=b_n-frac{1}{2}$.



$$a=frac{3}{8}$$
$$b=frac{1}{8}$$
$b_2=frac{52}{8}$



$a_2=frac{52}{8}-frac{1}{2}=6$



Actual $a_2=10, a_3$=43



So $a_2$ from $b_n$ method is not equal to actual $a_n$.



It means I am doing something wrong here, could anyone point out the mistake?







discrete-mathematics recurrence-relations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 19:33







Gorosso

















asked Jan 27 at 19:20









GorossoGorosso

315




315








  • 1




    $begingroup$
    check your $a,b$ again. Does not hold when $n=1.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:23






  • 1




    $begingroup$
    now your $b_1$ is incorrect.
    $endgroup$
    – dezdichado
    Jan 27 at 19:43










  • $begingroup$
    @dezdichado how do I find $b_1$ then? I used method located in comments from this post:(link at the end) So I thought $b_1$ is the same as $b_0$ but with '$-$' math.stackexchange.com/questions/3089757/…
    $endgroup$
    – Gorosso
    Jan 27 at 19:47








  • 1




    $begingroup$
    $b_1 = a_1+frac 12 = frac 32.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:52






  • 2




    $begingroup$
    I think you should start with a solution that looks like $a r_1^n + b r_2^n + c$, where $r_1$ and $r_2$ are roots of your characteristic polynomial (which you have already computed).
    $endgroup$
    – Aditya Dua
    Jan 27 at 20:02














  • 1




    $begingroup$
    check your $a,b$ again. Does not hold when $n=1.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:23






  • 1




    $begingroup$
    now your $b_1$ is incorrect.
    $endgroup$
    – dezdichado
    Jan 27 at 19:43










  • $begingroup$
    @dezdichado how do I find $b_1$ then? I used method located in comments from this post:(link at the end) So I thought $b_1$ is the same as $b_0$ but with '$-$' math.stackexchange.com/questions/3089757/…
    $endgroup$
    – Gorosso
    Jan 27 at 19:47








  • 1




    $begingroup$
    $b_1 = a_1+frac 12 = frac 32.$
    $endgroup$
    – dezdichado
    Jan 27 at 19:52






  • 2




    $begingroup$
    I think you should start with a solution that looks like $a r_1^n + b r_2^n + c$, where $r_1$ and $r_2$ are roots of your characteristic polynomial (which you have already computed).
    $endgroup$
    – Aditya Dua
    Jan 27 at 20:02








1




1




$begingroup$
check your $a,b$ again. Does not hold when $n=1.$
$endgroup$
– dezdichado
Jan 27 at 19:23




$begingroup$
check your $a,b$ again. Does not hold when $n=1.$
$endgroup$
– dezdichado
Jan 27 at 19:23




1




1




$begingroup$
now your $b_1$ is incorrect.
$endgroup$
– dezdichado
Jan 27 at 19:43




$begingroup$
now your $b_1$ is incorrect.
$endgroup$
– dezdichado
Jan 27 at 19:43












$begingroup$
@dezdichado how do I find $b_1$ then? I used method located in comments from this post:(link at the end) So I thought $b_1$ is the same as $b_0$ but with '$-$' math.stackexchange.com/questions/3089757/…
$endgroup$
– Gorosso
Jan 27 at 19:47






$begingroup$
@dezdichado how do I find $b_1$ then? I used method located in comments from this post:(link at the end) So I thought $b_1$ is the same as $b_0$ but with '$-$' math.stackexchange.com/questions/3089757/…
$endgroup$
– Gorosso
Jan 27 at 19:47






1




1




$begingroup$
$b_1 = a_1+frac 12 = frac 32.$
$endgroup$
– dezdichado
Jan 27 at 19:52




$begingroup$
$b_1 = a_1+frac 12 = frac 32.$
$endgroup$
– dezdichado
Jan 27 at 19:52




2




2




$begingroup$
I think you should start with a solution that looks like $a r_1^n + b r_2^n + c$, where $r_1$ and $r_2$ are roots of your characteristic polynomial (which you have already computed).
$endgroup$
– Aditya Dua
Jan 27 at 20:02




$begingroup$
I think you should start with a solution that looks like $a r_1^n + b r_2^n + c$, where $r_1$ and $r_2$ are roots of your characteristic polynomial (which you have already computed).
$endgroup$
– Aditya Dua
Jan 27 at 20:02










2 Answers
2






active

oldest

votes


















2












$begingroup$

Define $$b_n:=a_n+c=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c.$$Choosing $c=frac12$, $$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a(-3)^n+b5^n.$$You an obtain $a,,b$ from $b_0=frac12,,b_1=frac{3}{2}$. Then $a_n=b_n-frac12$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Assuming $a(n) = gamma^n$ and substituting into the homogeneous



    $$
    gamma^n-2gamma^{n-1}-15gamma^{n-2}=0to gamma^nleft(1-frac{2}{gamma}-frac{15}{gamma^2}right)=0
    $$



    and solving for $gamma$ we have



    $$
    a_h(n) = C_1(-3)^n + C_2 5^n
    $$



    and the particular dictates



    $$
    a_p(n)-2a_p(n-1)-15a_p(n-2) = 8
    $$



    so making $a_p(n) = C_0$ and substituting into the particular we have



    $$
    C_0-2C_0-15C_0 = 8to C_0 = -frac 12
    $$



    and finally



    $$
    a(n) = a_h(n)+a_p(n) = C_1(-3)^n + C_2 5^n-frac 12
    $$



    NOTE



    $$
    a(0) = C_1+C_2-frac 12 = 0\
    a(1) = C_1(-3)+C_25-frac 12 =1
    $$



    and solving for $C_1, C_2$ gives



    $$
    a(n) = frac 18left(-4+(-3)^n+3 cdot 5^nright)
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Does C1=a and C2= b? If so, I got $$b=frac{1}{8}$$ and $$a=-frac{1}{8}$$ If I try to calculate $a_2$ from your last line I get results=$$frac{30}{8}$$ which is not equal to 10.
      $endgroup$
      – Gorosso
      Jan 27 at 21:20










    • $begingroup$
      @Gorosso Please. See note attached.
      $endgroup$
      – Cesareo
      Jan 27 at 22:17










    • $begingroup$
      $$C_1=-C_2+frac{1}{2}$$ $$3C_2-frac{3}{2}+5C_2-frac{1}{2}=1$$ $$8C_2=3$$ $$C_2=frac{3}{8}$$ $$frac{1}{8}*(-3)^n+frac{3}{8}*5^n-frac{1}{2}$$ Am I doing something wrong here? Even if I use my version or yours $a_2$ is still not equal to 10
      $endgroup$
      – Gorosso
      Jan 27 at 22:37













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090006%2fsolve-the-recurrence-relation-a-n-2a-n-115a-n-28-for-n-geq2-a-0-0%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Define $$b_n:=a_n+c=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c.$$Choosing $c=frac12$, $$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a(-3)^n+b5^n.$$You an obtain $a,,b$ from $b_0=frac12,,b_1=frac{3}{2}$. Then $a_n=b_n-frac12$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Define $$b_n:=a_n+c=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c.$$Choosing $c=frac12$, $$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a(-3)^n+b5^n.$$You an obtain $a,,b$ from $b_0=frac12,,b_1=frac{3}{2}$. Then $a_n=b_n-frac12$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Define $$b_n:=a_n+c=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c.$$Choosing $c=frac12$, $$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a(-3)^n+b5^n.$$You an obtain $a,,b$ from $b_0=frac12,,b_1=frac{3}{2}$. Then $a_n=b_n-frac12$.






        share|cite|improve this answer









        $endgroup$



        Define $$b_n:=a_n+c=2(b_{n-1}-c)+15(b_{n-2}-c)+8+c=2b_{n-1}+15b_{n-2}+8-16c.$$Choosing $c=frac12$, $$b_n=2b_{n-1}+15b_{n-2}impliesexists a,,b:,b_n=a(-3)^n+b5^n.$$You an obtain $a,,b$ from $b_0=frac12,,b_1=frac{3}{2}$. Then $a_n=b_n-frac12$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 27 at 19:56









        J.G.J.G.

        32k23250




        32k23250























            1












            $begingroup$

            Assuming $a(n) = gamma^n$ and substituting into the homogeneous



            $$
            gamma^n-2gamma^{n-1}-15gamma^{n-2}=0to gamma^nleft(1-frac{2}{gamma}-frac{15}{gamma^2}right)=0
            $$



            and solving for $gamma$ we have



            $$
            a_h(n) = C_1(-3)^n + C_2 5^n
            $$



            and the particular dictates



            $$
            a_p(n)-2a_p(n-1)-15a_p(n-2) = 8
            $$



            so making $a_p(n) = C_0$ and substituting into the particular we have



            $$
            C_0-2C_0-15C_0 = 8to C_0 = -frac 12
            $$



            and finally



            $$
            a(n) = a_h(n)+a_p(n) = C_1(-3)^n + C_2 5^n-frac 12
            $$



            NOTE



            $$
            a(0) = C_1+C_2-frac 12 = 0\
            a(1) = C_1(-3)+C_25-frac 12 =1
            $$



            and solving for $C_1, C_2$ gives



            $$
            a(n) = frac 18left(-4+(-3)^n+3 cdot 5^nright)
            $$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Does C1=a and C2= b? If so, I got $$b=frac{1}{8}$$ and $$a=-frac{1}{8}$$ If I try to calculate $a_2$ from your last line I get results=$$frac{30}{8}$$ which is not equal to 10.
              $endgroup$
              – Gorosso
              Jan 27 at 21:20










            • $begingroup$
              @Gorosso Please. See note attached.
              $endgroup$
              – Cesareo
              Jan 27 at 22:17










            • $begingroup$
              $$C_1=-C_2+frac{1}{2}$$ $$3C_2-frac{3}{2}+5C_2-frac{1}{2}=1$$ $$8C_2=3$$ $$C_2=frac{3}{8}$$ $$frac{1}{8}*(-3)^n+frac{3}{8}*5^n-frac{1}{2}$$ Am I doing something wrong here? Even if I use my version or yours $a_2$ is still not equal to 10
              $endgroup$
              – Gorosso
              Jan 27 at 22:37


















            1












            $begingroup$

            Assuming $a(n) = gamma^n$ and substituting into the homogeneous



            $$
            gamma^n-2gamma^{n-1}-15gamma^{n-2}=0to gamma^nleft(1-frac{2}{gamma}-frac{15}{gamma^2}right)=0
            $$



            and solving for $gamma$ we have



            $$
            a_h(n) = C_1(-3)^n + C_2 5^n
            $$



            and the particular dictates



            $$
            a_p(n)-2a_p(n-1)-15a_p(n-2) = 8
            $$



            so making $a_p(n) = C_0$ and substituting into the particular we have



            $$
            C_0-2C_0-15C_0 = 8to C_0 = -frac 12
            $$



            and finally



            $$
            a(n) = a_h(n)+a_p(n) = C_1(-3)^n + C_2 5^n-frac 12
            $$



            NOTE



            $$
            a(0) = C_1+C_2-frac 12 = 0\
            a(1) = C_1(-3)+C_25-frac 12 =1
            $$



            and solving for $C_1, C_2$ gives



            $$
            a(n) = frac 18left(-4+(-3)^n+3 cdot 5^nright)
            $$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Does C1=a and C2= b? If so, I got $$b=frac{1}{8}$$ and $$a=-frac{1}{8}$$ If I try to calculate $a_2$ from your last line I get results=$$frac{30}{8}$$ which is not equal to 10.
              $endgroup$
              – Gorosso
              Jan 27 at 21:20










            • $begingroup$
              @Gorosso Please. See note attached.
              $endgroup$
              – Cesareo
              Jan 27 at 22:17










            • $begingroup$
              $$C_1=-C_2+frac{1}{2}$$ $$3C_2-frac{3}{2}+5C_2-frac{1}{2}=1$$ $$8C_2=3$$ $$C_2=frac{3}{8}$$ $$frac{1}{8}*(-3)^n+frac{3}{8}*5^n-frac{1}{2}$$ Am I doing something wrong here? Even if I use my version or yours $a_2$ is still not equal to 10
              $endgroup$
              – Gorosso
              Jan 27 at 22:37
















            1












            1








            1





            $begingroup$

            Assuming $a(n) = gamma^n$ and substituting into the homogeneous



            $$
            gamma^n-2gamma^{n-1}-15gamma^{n-2}=0to gamma^nleft(1-frac{2}{gamma}-frac{15}{gamma^2}right)=0
            $$



            and solving for $gamma$ we have



            $$
            a_h(n) = C_1(-3)^n + C_2 5^n
            $$



            and the particular dictates



            $$
            a_p(n)-2a_p(n-1)-15a_p(n-2) = 8
            $$



            so making $a_p(n) = C_0$ and substituting into the particular we have



            $$
            C_0-2C_0-15C_0 = 8to C_0 = -frac 12
            $$



            and finally



            $$
            a(n) = a_h(n)+a_p(n) = C_1(-3)^n + C_2 5^n-frac 12
            $$



            NOTE



            $$
            a(0) = C_1+C_2-frac 12 = 0\
            a(1) = C_1(-3)+C_25-frac 12 =1
            $$



            and solving for $C_1, C_2$ gives



            $$
            a(n) = frac 18left(-4+(-3)^n+3 cdot 5^nright)
            $$






            share|cite|improve this answer











            $endgroup$



            Assuming $a(n) = gamma^n$ and substituting into the homogeneous



            $$
            gamma^n-2gamma^{n-1}-15gamma^{n-2}=0to gamma^nleft(1-frac{2}{gamma}-frac{15}{gamma^2}right)=0
            $$



            and solving for $gamma$ we have



            $$
            a_h(n) = C_1(-3)^n + C_2 5^n
            $$



            and the particular dictates



            $$
            a_p(n)-2a_p(n-1)-15a_p(n-2) = 8
            $$



            so making $a_p(n) = C_0$ and substituting into the particular we have



            $$
            C_0-2C_0-15C_0 = 8to C_0 = -frac 12
            $$



            and finally



            $$
            a(n) = a_h(n)+a_p(n) = C_1(-3)^n + C_2 5^n-frac 12
            $$



            NOTE



            $$
            a(0) = C_1+C_2-frac 12 = 0\
            a(1) = C_1(-3)+C_25-frac 12 =1
            $$



            and solving for $C_1, C_2$ gives



            $$
            a(n) = frac 18left(-4+(-3)^n+3 cdot 5^nright)
            $$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 27 at 22:17

























            answered Jan 27 at 20:36









            CesareoCesareo

            9,4673517




            9,4673517












            • $begingroup$
              Does C1=a and C2= b? If so, I got $$b=frac{1}{8}$$ and $$a=-frac{1}{8}$$ If I try to calculate $a_2$ from your last line I get results=$$frac{30}{8}$$ which is not equal to 10.
              $endgroup$
              – Gorosso
              Jan 27 at 21:20










            • $begingroup$
              @Gorosso Please. See note attached.
              $endgroup$
              – Cesareo
              Jan 27 at 22:17










            • $begingroup$
              $$C_1=-C_2+frac{1}{2}$$ $$3C_2-frac{3}{2}+5C_2-frac{1}{2}=1$$ $$8C_2=3$$ $$C_2=frac{3}{8}$$ $$frac{1}{8}*(-3)^n+frac{3}{8}*5^n-frac{1}{2}$$ Am I doing something wrong here? Even if I use my version or yours $a_2$ is still not equal to 10
              $endgroup$
              – Gorosso
              Jan 27 at 22:37




















            • $begingroup$
              Does C1=a and C2= b? If so, I got $$b=frac{1}{8}$$ and $$a=-frac{1}{8}$$ If I try to calculate $a_2$ from your last line I get results=$$frac{30}{8}$$ which is not equal to 10.
              $endgroup$
              – Gorosso
              Jan 27 at 21:20










            • $begingroup$
              @Gorosso Please. See note attached.
              $endgroup$
              – Cesareo
              Jan 27 at 22:17










            • $begingroup$
              $$C_1=-C_2+frac{1}{2}$$ $$3C_2-frac{3}{2}+5C_2-frac{1}{2}=1$$ $$8C_2=3$$ $$C_2=frac{3}{8}$$ $$frac{1}{8}*(-3)^n+frac{3}{8}*5^n-frac{1}{2}$$ Am I doing something wrong here? Even if I use my version or yours $a_2$ is still not equal to 10
              $endgroup$
              – Gorosso
              Jan 27 at 22:37


















            $begingroup$
            Does C1=a and C2= b? If so, I got $$b=frac{1}{8}$$ and $$a=-frac{1}{8}$$ If I try to calculate $a_2$ from your last line I get results=$$frac{30}{8}$$ which is not equal to 10.
            $endgroup$
            – Gorosso
            Jan 27 at 21:20




            $begingroup$
            Does C1=a and C2= b? If so, I got $$b=frac{1}{8}$$ and $$a=-frac{1}{8}$$ If I try to calculate $a_2$ from your last line I get results=$$frac{30}{8}$$ which is not equal to 10.
            $endgroup$
            – Gorosso
            Jan 27 at 21:20












            $begingroup$
            @Gorosso Please. See note attached.
            $endgroup$
            – Cesareo
            Jan 27 at 22:17




            $begingroup$
            @Gorosso Please. See note attached.
            $endgroup$
            – Cesareo
            Jan 27 at 22:17












            $begingroup$
            $$C_1=-C_2+frac{1}{2}$$ $$3C_2-frac{3}{2}+5C_2-frac{1}{2}=1$$ $$8C_2=3$$ $$C_2=frac{3}{8}$$ $$frac{1}{8}*(-3)^n+frac{3}{8}*5^n-frac{1}{2}$$ Am I doing something wrong here? Even if I use my version or yours $a_2$ is still not equal to 10
            $endgroup$
            – Gorosso
            Jan 27 at 22:37






            $begingroup$
            $$C_1=-C_2+frac{1}{2}$$ $$3C_2-frac{3}{2}+5C_2-frac{1}{2}=1$$ $$8C_2=3$$ $$C_2=frac{3}{8}$$ $$frac{1}{8}*(-3)^n+frac{3}{8}*5^n-frac{1}{2}$$ Am I doing something wrong here? Even if I use my version or yours $a_2$ is still not equal to 10
            $endgroup$
            – Gorosso
            Jan 27 at 22:37




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090006%2fsolve-the-recurrence-relation-a-n-2a-n-115a-n-28-for-n-geq2-a-0-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith