Characterization of a rotund space












0












$begingroup$


A normed linear space $X$ is said to be rotund if for all $x,yin X$ with $|x|=1=|y|$, $|x+y|<2$.



I want to prove that a normed linear space $X$ is rotund iff the function $varphi:Xto mathbb{R}$ defined by $varphi(x)=frac{1}{2}|x|^2$ for all $xin X$ is strictly convex.



Suppose $varphi$ is strictly convex. Let $x,yin X$ such that $|x|=1=|y|$. Then $|frac{x+y}{2}|^2=2varphi(frac{x}{2}+frac{y}{2})<varphi(x)+varphi(y)=frac{1}{2}+frac{1}{2}=1$. Thus $|x+y|<2$ and so $X$ is rotund. But how to prove the converse. Any hint will be thankfully appreciated.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    A normed linear space $X$ is said to be rotund if for all $x,yin X$ with $|x|=1=|y|$, $|x+y|<2$.



    I want to prove that a normed linear space $X$ is rotund iff the function $varphi:Xto mathbb{R}$ defined by $varphi(x)=frac{1}{2}|x|^2$ for all $xin X$ is strictly convex.



    Suppose $varphi$ is strictly convex. Let $x,yin X$ such that $|x|=1=|y|$. Then $|frac{x+y}{2}|^2=2varphi(frac{x}{2}+frac{y}{2})<varphi(x)+varphi(y)=frac{1}{2}+frac{1}{2}=1$. Thus $|x+y|<2$ and so $X$ is rotund. But how to prove the converse. Any hint will be thankfully appreciated.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      A normed linear space $X$ is said to be rotund if for all $x,yin X$ with $|x|=1=|y|$, $|x+y|<2$.



      I want to prove that a normed linear space $X$ is rotund iff the function $varphi:Xto mathbb{R}$ defined by $varphi(x)=frac{1}{2}|x|^2$ for all $xin X$ is strictly convex.



      Suppose $varphi$ is strictly convex. Let $x,yin X$ such that $|x|=1=|y|$. Then $|frac{x+y}{2}|^2=2varphi(frac{x}{2}+frac{y}{2})<varphi(x)+varphi(y)=frac{1}{2}+frac{1}{2}=1$. Thus $|x+y|<2$ and so $X$ is rotund. But how to prove the converse. Any hint will be thankfully appreciated.










      share|cite|improve this question









      $endgroup$




      A normed linear space $X$ is said to be rotund if for all $x,yin X$ with $|x|=1=|y|$, $|x+y|<2$.



      I want to prove that a normed linear space $X$ is rotund iff the function $varphi:Xto mathbb{R}$ defined by $varphi(x)=frac{1}{2}|x|^2$ for all $xin X$ is strictly convex.



      Suppose $varphi$ is strictly convex. Let $x,yin X$ such that $|x|=1=|y|$. Then $|frac{x+y}{2}|^2=2varphi(frac{x}{2}+frac{y}{2})<varphi(x)+varphi(y)=frac{1}{2}+frac{1}{2}=1$. Thus $|x+y|<2$ and so $X$ is rotund. But how to prove the converse. Any hint will be thankfully appreciated.







      functional-analysis convex-analysis norm normed-spaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 1 at 9:46









      AnupamAnupam

      2,5401825




      2,5401825






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          We can use a different equivalent definition of rotund given in an "An introduction to Banach space theory" by R.E. Megginson.



          A normed space is rotund if for all $x,yin X$ with $|x|=|y|=1$ and all $tin (0,1)$ we have $|tx+(1-t)y|<1$. This is equivalent to your definition by Proposition 5.1.2 in this book.



          Let $x,yin X$ and let $lambdain(0,1)$. We have to show that $varphi(lambda x+(1-lambda)y)<lambdavarphi(x)+(1-lambda)varphi(y)$. Let $x'=frac{x}{|x|}$, let $y'=frac{y}{|y|}$, let $c=lambda|x|+(1-lambda)|y|$ and let $mu=frac{lambda|x|}{c}in(0,1)$. Note that
          $$varphi(lambda x+(1-lambda)y)=c^{2}varphi(mu x'+(1-mu)y')=frac{c^{2}}{2}|mu x'+(1-mu)y'|^{2}<frac{c^{2}}{2}\=frac{lambda^{2}|x|^{2}+2(lambda-lambda^{2})|x||y|+(1-lambda)^{2}|y|^{2}}{2}\=frac{lambda|x|^{2}+(1-lambda)|y|^{2}+(lambda^{2}-lambda)|x|^{2}+2(lambda-lambda^{2})|x||y|+(lambda^{2}-lambda)|y|^{2}}{2}=(*).$$
          Since $2|x||y|leq|x|^{2}+|y|^{2}$ we find
          $$(*)leqfrac{lambda|x|^{2}+(1-lambda)|y|^{2}}{2}=lambda|x|^{2}varphi(x')+(1-lambda)|y|^{2}varphi(y')=lambdavarphi(x)+(1-lambda)varphi(y).$$
          So $varphi$ is strictly convex.






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096034%2fcharacterization-of-a-rotund-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            We can use a different equivalent definition of rotund given in an "An introduction to Banach space theory" by R.E. Megginson.



            A normed space is rotund if for all $x,yin X$ with $|x|=|y|=1$ and all $tin (0,1)$ we have $|tx+(1-t)y|<1$. This is equivalent to your definition by Proposition 5.1.2 in this book.



            Let $x,yin X$ and let $lambdain(0,1)$. We have to show that $varphi(lambda x+(1-lambda)y)<lambdavarphi(x)+(1-lambda)varphi(y)$. Let $x'=frac{x}{|x|}$, let $y'=frac{y}{|y|}$, let $c=lambda|x|+(1-lambda)|y|$ and let $mu=frac{lambda|x|}{c}in(0,1)$. Note that
            $$varphi(lambda x+(1-lambda)y)=c^{2}varphi(mu x'+(1-mu)y')=frac{c^{2}}{2}|mu x'+(1-mu)y'|^{2}<frac{c^{2}}{2}\=frac{lambda^{2}|x|^{2}+2(lambda-lambda^{2})|x||y|+(1-lambda)^{2}|y|^{2}}{2}\=frac{lambda|x|^{2}+(1-lambda)|y|^{2}+(lambda^{2}-lambda)|x|^{2}+2(lambda-lambda^{2})|x||y|+(lambda^{2}-lambda)|y|^{2}}{2}=(*).$$
            Since $2|x||y|leq|x|^{2}+|y|^{2}$ we find
            $$(*)leqfrac{lambda|x|^{2}+(1-lambda)|y|^{2}}{2}=lambda|x|^{2}varphi(x')+(1-lambda)|y|^{2}varphi(y')=lambdavarphi(x)+(1-lambda)varphi(y).$$
            So $varphi$ is strictly convex.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              We can use a different equivalent definition of rotund given in an "An introduction to Banach space theory" by R.E. Megginson.



              A normed space is rotund if for all $x,yin X$ with $|x|=|y|=1$ and all $tin (0,1)$ we have $|tx+(1-t)y|<1$. This is equivalent to your definition by Proposition 5.1.2 in this book.



              Let $x,yin X$ and let $lambdain(0,1)$. We have to show that $varphi(lambda x+(1-lambda)y)<lambdavarphi(x)+(1-lambda)varphi(y)$. Let $x'=frac{x}{|x|}$, let $y'=frac{y}{|y|}$, let $c=lambda|x|+(1-lambda)|y|$ and let $mu=frac{lambda|x|}{c}in(0,1)$. Note that
              $$varphi(lambda x+(1-lambda)y)=c^{2}varphi(mu x'+(1-mu)y')=frac{c^{2}}{2}|mu x'+(1-mu)y'|^{2}<frac{c^{2}}{2}\=frac{lambda^{2}|x|^{2}+2(lambda-lambda^{2})|x||y|+(1-lambda)^{2}|y|^{2}}{2}\=frac{lambda|x|^{2}+(1-lambda)|y|^{2}+(lambda^{2}-lambda)|x|^{2}+2(lambda-lambda^{2})|x||y|+(lambda^{2}-lambda)|y|^{2}}{2}=(*).$$
              Since $2|x||y|leq|x|^{2}+|y|^{2}$ we find
              $$(*)leqfrac{lambda|x|^{2}+(1-lambda)|y|^{2}}{2}=lambda|x|^{2}varphi(x')+(1-lambda)|y|^{2}varphi(y')=lambdavarphi(x)+(1-lambda)varphi(y).$$
              So $varphi$ is strictly convex.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                We can use a different equivalent definition of rotund given in an "An introduction to Banach space theory" by R.E. Megginson.



                A normed space is rotund if for all $x,yin X$ with $|x|=|y|=1$ and all $tin (0,1)$ we have $|tx+(1-t)y|<1$. This is equivalent to your definition by Proposition 5.1.2 in this book.



                Let $x,yin X$ and let $lambdain(0,1)$. We have to show that $varphi(lambda x+(1-lambda)y)<lambdavarphi(x)+(1-lambda)varphi(y)$. Let $x'=frac{x}{|x|}$, let $y'=frac{y}{|y|}$, let $c=lambda|x|+(1-lambda)|y|$ and let $mu=frac{lambda|x|}{c}in(0,1)$. Note that
                $$varphi(lambda x+(1-lambda)y)=c^{2}varphi(mu x'+(1-mu)y')=frac{c^{2}}{2}|mu x'+(1-mu)y'|^{2}<frac{c^{2}}{2}\=frac{lambda^{2}|x|^{2}+2(lambda-lambda^{2})|x||y|+(1-lambda)^{2}|y|^{2}}{2}\=frac{lambda|x|^{2}+(1-lambda)|y|^{2}+(lambda^{2}-lambda)|x|^{2}+2(lambda-lambda^{2})|x||y|+(lambda^{2}-lambda)|y|^{2}}{2}=(*).$$
                Since $2|x||y|leq|x|^{2}+|y|^{2}$ we find
                $$(*)leqfrac{lambda|x|^{2}+(1-lambda)|y|^{2}}{2}=lambda|x|^{2}varphi(x')+(1-lambda)|y|^{2}varphi(y')=lambdavarphi(x)+(1-lambda)varphi(y).$$
                So $varphi$ is strictly convex.






                share|cite|improve this answer









                $endgroup$



                We can use a different equivalent definition of rotund given in an "An introduction to Banach space theory" by R.E. Megginson.



                A normed space is rotund if for all $x,yin X$ with $|x|=|y|=1$ and all $tin (0,1)$ we have $|tx+(1-t)y|<1$. This is equivalent to your definition by Proposition 5.1.2 in this book.



                Let $x,yin X$ and let $lambdain(0,1)$. We have to show that $varphi(lambda x+(1-lambda)y)<lambdavarphi(x)+(1-lambda)varphi(y)$. Let $x'=frac{x}{|x|}$, let $y'=frac{y}{|y|}$, let $c=lambda|x|+(1-lambda)|y|$ and let $mu=frac{lambda|x|}{c}in(0,1)$. Note that
                $$varphi(lambda x+(1-lambda)y)=c^{2}varphi(mu x'+(1-mu)y')=frac{c^{2}}{2}|mu x'+(1-mu)y'|^{2}<frac{c^{2}}{2}\=frac{lambda^{2}|x|^{2}+2(lambda-lambda^{2})|x||y|+(1-lambda)^{2}|y|^{2}}{2}\=frac{lambda|x|^{2}+(1-lambda)|y|^{2}+(lambda^{2}-lambda)|x|^{2}+2(lambda-lambda^{2})|x||y|+(lambda^{2}-lambda)|y|^{2}}{2}=(*).$$
                Since $2|x||y|leq|x|^{2}+|y|^{2}$ we find
                $$(*)leqfrac{lambda|x|^{2}+(1-lambda)|y|^{2}}{2}=lambda|x|^{2}varphi(x')+(1-lambda)|y|^{2}varphi(y')=lambdavarphi(x)+(1-lambda)varphi(y).$$
                So $varphi$ is strictly convex.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Feb 1 at 10:53









                Floris ClaassensFloris Claassens

                1,45429




                1,45429






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096034%2fcharacterization-of-a-rotund-space%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    Npm cannot find a required file even through it is in the searched directory

                    How to fix TextFormField cause rebuild widget in Flutter