Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$?
$begingroup$
Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$
Please provide a proof/counterexample. I've tried brute force and ended up with:
$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$
$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$
complex-numbers
$endgroup$
add a comment |
$begingroup$
Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$
Please provide a proof/counterexample. I've tried brute force and ended up with:
$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$
$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$
complex-numbers
$endgroup$
1
$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12
$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13
$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16
add a comment |
$begingroup$
Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$
Please provide a proof/counterexample. I've tried brute force and ended up with:
$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$
$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$
complex-numbers
$endgroup$
Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$
Please provide a proof/counterexample. I've tried brute force and ended up with:
$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$
$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$
complex-numbers
complex-numbers
edited Feb 2 at 11:58
jvdhooft
5,65961641
5,65961641
asked Feb 2 at 11:11
user168651user168651
62
62
1
$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12
$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13
$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16
add a comment |
1
$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12
$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13
$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16
1
1
$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12
$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12
$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13
$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13
$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16
$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
$$
(a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
$$
but $a+ibneq 1$.
$endgroup$
add a comment |
$begingroup$
If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:
- $a+bi=(x+iy)cdot 1$
- $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$
- $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$
$endgroup$
add a comment |
$begingroup$
No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.
If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097195%2fdoes-a-bi3-xyi3-implies-a-bi-x-yi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
$$
(a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
$$
but $a+ibneq 1$.
$endgroup$
add a comment |
$begingroup$
Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
$$
(a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
$$
but $a+ibneq 1$.
$endgroup$
add a comment |
$begingroup$
Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
$$
(a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
$$
but $a+ibneq 1$.
$endgroup$
Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
$$
(a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
$$
but $a+ibneq 1$.
answered Feb 2 at 11:17
asdasd
30729
30729
add a comment |
add a comment |
$begingroup$
If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:
- $a+bi=(x+iy)cdot 1$
- $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$
- $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$
$endgroup$
add a comment |
$begingroup$
If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:
- $a+bi=(x+iy)cdot 1$
- $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$
- $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$
$endgroup$
add a comment |
$begingroup$
If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:
- $a+bi=(x+iy)cdot 1$
- $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$
- $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$
$endgroup$
If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:
- $a+bi=(x+iy)cdot 1$
- $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$
- $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$
answered Feb 2 at 11:23


cansomeonehelpmeoutcansomeonehelpmeout
7,3323935
7,3323935
add a comment |
add a comment |
$begingroup$
No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.
If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.
$endgroup$
add a comment |
$begingroup$
No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.
If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.
$endgroup$
add a comment |
$begingroup$
No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.
If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.
$endgroup$
No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.
If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.
answered Feb 2 at 11:41
Chris CusterChris Custer
14.4k3827
14.4k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097195%2fdoes-a-bi3-xyi3-implies-a-bi-x-yi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12
$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13
$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16