Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$?












0












$begingroup$



Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$




Please provide a proof/counterexample. I've tried brute force and ended up with:



$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$



$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    what are $c$ and $d$?
    $endgroup$
    – asd
    Feb 2 at 11:12










  • $begingroup$
    @asd Sorry, I meant $x,y$
    $endgroup$
    – user168651
    Feb 2 at 11:13












  • $begingroup$
    you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
    $endgroup$
    – Matteo
    Feb 2 at 11:16
















0












$begingroup$



Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$




Please provide a proof/counterexample. I've tried brute force and ended up with:



$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$



$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    what are $c$ and $d$?
    $endgroup$
    – asd
    Feb 2 at 11:12










  • $begingroup$
    @asd Sorry, I meant $x,y$
    $endgroup$
    – user168651
    Feb 2 at 11:13












  • $begingroup$
    you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
    $endgroup$
    – Matteo
    Feb 2 at 11:16














0












0








0





$begingroup$



Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$




Please provide a proof/counterexample. I've tried brute force and ended up with:



$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$



$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$










share|cite|improve this question











$endgroup$





Does $(a + bi)^3 = (x+yi)^3 implies a + bi = x + yi$, where $a,b,x,y in mathbb{R}?$




Please provide a proof/counterexample. I've tried brute force and ended up with:



$$(a - x)(a^2 + ax + x^2) + 3(-ab^2 + xy^2) = 0$$



$$(y - b)(y^2 + by + b^2) + 3(a^2b - x^2y) = 0$$







complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 11:58









jvdhooft

5,65961641




5,65961641










asked Feb 2 at 11:11









user168651user168651

62




62








  • 1




    $begingroup$
    what are $c$ and $d$?
    $endgroup$
    – asd
    Feb 2 at 11:12










  • $begingroup$
    @asd Sorry, I meant $x,y$
    $endgroup$
    – user168651
    Feb 2 at 11:13












  • $begingroup$
    you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
    $endgroup$
    – Matteo
    Feb 2 at 11:16














  • 1




    $begingroup$
    what are $c$ and $d$?
    $endgroup$
    – asd
    Feb 2 at 11:12










  • $begingroup$
    @asd Sorry, I meant $x,y$
    $endgroup$
    – user168651
    Feb 2 at 11:13












  • $begingroup$
    you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
    $endgroup$
    – Matteo
    Feb 2 at 11:16








1




1




$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12




$begingroup$
what are $c$ and $d$?
$endgroup$
– asd
Feb 2 at 11:12












$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13






$begingroup$
@asd Sorry, I meant $x,y$
$endgroup$
– user168651
Feb 2 at 11:13














$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16




$begingroup$
you mean $(a+ib)^3 = (x+yi)^3 Rightarrow a+ib = x+iy$? If this is the case, the assertion is clearly false...
$endgroup$
– Matteo
Feb 2 at 11:16










3 Answers
3






active

oldest

votes


















3












$begingroup$

Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
$$
(a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
$$

but $a+ibneq 1$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:




    • $a+bi=(x+iy)cdot 1$

    • $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$

    • $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.



      If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.






      share|cite|improve this answer









      $endgroup$














        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097195%2fdoes-a-bi3-xyi3-implies-a-bi-x-yi%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
        $$
        (a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
        $$

        but $a+ibneq 1$.






        share|cite|improve this answer









        $endgroup$


















          3












          $begingroup$

          Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
          $$
          (a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
          $$

          but $a+ibneq 1$.






          share|cite|improve this answer









          $endgroup$
















            3












            3








            3





            $begingroup$

            Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
            $$
            (a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
            $$

            but $a+ibneq 1$.






            share|cite|improve this answer









            $endgroup$



            Take $a+ib=e^{frac{2pi i}{3}}$ and $x+iy=1$ We have
            $$
            (a+ib)^3=(e^{frac{2pi i}{3}})^3=e^{2pi i}=1=1^3
            $$

            but $a+ibneq 1$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 2 at 11:17









            asdasd

            30729




            30729























                2












                $begingroup$

                If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:




                • $a+bi=(x+iy)cdot 1$

                • $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$

                • $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:




                  • $a+bi=(x+iy)cdot 1$

                  • $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$

                  • $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:




                    • $a+bi=(x+iy)cdot 1$

                    • $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$

                    • $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$






                    share|cite|improve this answer









                    $endgroup$



                    If $z^3=w^3$, then $$z^3=(we^{2pi ik})^3\z=we^{frac{2pi ik}{3}}$$ That is, $z,w$ differ by a unit. In particular, there are three possibilities:




                    • $a+bi=(x+iy)cdot 1$

                    • $a+bi=(x+iy)cdot e^{frac{2pi i}{3}}$

                    • $a+bi=(x+iy)cdot e^{frac{4pi i}{3}}$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Feb 2 at 11:23









                    cansomeonehelpmeoutcansomeonehelpmeout

                    7,3323935




                    7,3323935























                        0












                        $begingroup$

                        No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.



                        If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.



                          If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.



                            If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.






                            share|cite|improve this answer









                            $endgroup$



                            No. There are $3$ roots of $z^3=z_0$ for any $0not=z_0inBbb C$.



                            If $gamma$ is one, then $sigmagamma,sigma ^2gamma $ are the other two, where $sigma =e^{frac{2pi i}3}$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 2 at 11:41









                            Chris CusterChris Custer

                            14.4k3827




                            14.4k3827






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097195%2fdoes-a-bi3-xyi3-implies-a-bi-x-yi%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith