Integral arising from QED vacuum polarization












1












$begingroup$


I would like to integrate



$$int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$



for $a>0$.



One obvious substitution, $y=(1-x^2)^{-1/2}$, produces



$$int_1^infty y^{-4}(y^2-1)^{-1/2}e^{-a y}dy$$



but neither I nor Mathematica can do this integral either. Any ideas?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I would like to integrate



    $$int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$



    for $a>0$.



    One obvious substitution, $y=(1-x^2)^{-1/2}$, produces



    $$int_1^infty y^{-4}(y^2-1)^{-1/2}e^{-a y}dy$$



    but neither I nor Mathematica can do this integral either. Any ideas?










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$


      I would like to integrate



      $$int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$



      for $a>0$.



      One obvious substitution, $y=(1-x^2)^{-1/2}$, produces



      $$int_1^infty y^{-4}(y^2-1)^{-1/2}e^{-a y}dy$$



      but neither I nor Mathematica can do this integral either. Any ideas?










      share|cite|improve this question









      $endgroup$




      I would like to integrate



      $$int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$



      for $a>0$.



      One obvious substitution, $y=(1-x^2)^{-1/2}$, produces



      $$int_1^infty y^{-4}(y^2-1)^{-1/2}e^{-a y}dy$$



      but neither I nor Mathematica can do this integral either. Any ideas?







      integration






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 3 at 6:35









      G. SmithG. Smith

      2664




      2664






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Excluding numerical integration, I should do it using series expansion built at $x=0$. This would give
          $$left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}}=e^{-a}left(1+sum_{k=1}^n b_k , x^{2k}+O(x^{2k+2}) right)$$
          $$left(
          begin{array}{cc}
          k & b_k \
          1 & -frac{a}{2}-1 \
          2 & frac{a^2}{8}+frac{a}{8} \
          3 & -frac{a^3}{48}+frac{a^2}{16}+frac{a}{16} \
          4 & frac{a^4}{384}-frac{5 a^3}{192}+frac{5 a^2}{128}+frac{5 a}{128} \
          5 & -frac{a^5}{3840}+frac{a^4}{192}-frac{7 a^3}{256}+frac{7 a^2}{256}+frac{7
          a}{256} \
          6 & frac{a^6}{46080}-frac{11 a^5}{15360}+frac{23 a^4}{3072}-frac{7
          a^3}{256}+frac{21 a^2}{1024}+frac{21 a}{1024} \
          7 & -frac{a^7}{645120}+frac{7 a^6}{92160}-frac{a^5}{768}+frac{29
          a^4}{3072}-frac{55 a^3}{2048}+frac{33 a^2}{2048}+frac{33 a}{2048} \
          8 & frac{a^8}{10321920}-frac{17 a^7}{2580480}+frac{41 a^6}{245760}-frac{97
          a^5}{49152}+frac{1093 a^4}{98304}-frac{429 a^3}{16384}+frac{429
          a^2}{32768}+frac{429 a}{32768} \
          9 & -frac{a^9}{185794560}+frac{a^8}{2064384}-frac{5 a^7}{294912}+frac{29
          a^6}{98304}-frac{177 a^5}{65536}+frac{103 a^4}{8192}-frac{5005
          a^3}{196608}+frac{715 a^2}{65536}+frac{715 a}{65536}
          end{array}
          right)$$
          and integrate termwise to get
          $$int_0^1left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}},dx=e^{-a}left(1+sum_{k=1}^n frac {b_k}{2k+1} right)$$



          Limited to $n=9$, this would give the following results
          $$left(
          begin{array}{ccc}
          a & text{approximation} & text{exact} \
          0 & 0.6666666667 & 0.6666666667 \
          1 & 0.2123631665 & 0.2125607905 \
          2 & 0.07059996854 & 0.07043172674 \
          3 & 0.02383555255 & 0.02381813925 \
          4 & 0.008134307224 & 0.008161937294 \
          5 & 0.002812734609 & 0.002823407002 \
          6 & 0.0009851151098 & 0.0009836552422 \
          7 & 0.0003474991861 & 0.0003446169740 \
          8 & 0.0001224830345 & 0.0001212798570 \
          9 & 0.00004289847190 & 0.00004284093275 \
          10 & 0.00001493941267 & 0.00001518064585
          end{array}
          right)$$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            With a subsitution $x=sin{t}$, $dx=cos{t},dt$:
            $$I(a)=int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$
            $$I(a)=int_0^{pi/2}(cos^3{t})e^{-a(sec{t})}dt$$



            With the Feyman trick:



            $$I'(a)=-int_0^{pi/2}(cos^2{t})e^{-a(sec{t})}dt$$
            $$I''(a)=int_0^{pi/2}(cos{t})e^{-a(sec{t})}dt$$
            $$I'''(a)=-int_0^{pi/2}e^{-a(sec{t})}dt$$
            $$I^{(4)}(a)=int_0^{pi/2}sec{t}e^{-a(sec{t})}dt$$
            $$I^{(5)}(a)=-int_0^{pi/2}e^{-a(sec{t})}sec^2{t}dt$$
            $$I^{(6)}(a)=int_0^{pi/2}sec^3{t}e^{-a(sec{t})}dt$$



            Obvioulsy $I''(0)=1$ and $I'''(0)=-pi/2$. Integrating by parts $I(a)$, with $u=cos^2(t)e^{-asec(t)},dt$ and $dv=cos(t)dt$, then $v=sin(t)$ and $du=Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt$ :



            begin{align}
            I(a) &= lim_{ tto pi/2^{-} } sin(t) cos^2(t)e^{-asec(t)} - int_{0}^{pi/2} sin(t) Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt \
            I(a) &= 2int_{0}^{pi/2} sin^2(t)cos(t) e^{-asec(t)} dt + aint_{0}^{pi/2} sin^2(t) e^{-asec(t)} dt \
            end{align}



            Using the identity $sin^2(t)= 1- cos^2(t)$:



            begin{align}
            I(a) &= 2int_{0}^{pi/2} cos(t) e^{-asec(t)} dt - 2 int_{0}^{pi/2} cos^3(t) e^{-asec(t)} dt + a int_{0}^{pi/2} e^{-asec(t)} dt - a int_{0}^{pi/2} cos^2(t) e^{-asec(t)} dt \
            I(a) &= 2 I''(a) - 2I(a) - aI''(a) + aI'(a) \
            0 &= aI'''(a) - 2I''(a) - aI'(a) + 3I(a) label{1}tag{1}
            end{align}



            Remember that $I''(0)=1$, then if we evaluate $a=0$ in eqref{1}, we can demostrate that $I(0)=2/3$ . If you derivate eqref{1} :
            $$
            0 = aI^{(4)}(a) - I'''(a) -aI''(a) + 2I'(a) label{2}tag{2}
            $$



            If $lim_{ato 0^{+}}$ in eqref{2}, $I'(0)=-pi/4$ . Derivating eqref{2} :
            $$
            aI^{(5)}(a) - aI'''(a) + I''(a) = 0 label{3}tag{3}
            $$

            Derivating eqref{3} :
            $$
            aI^{(6)} + I^{(5)}(a) - a I^{(4)} = 0
            $$

            If $y(a)=I^{(4)}(a)$:
            $$ a^2y''(a) + ay'(a) - a^2 y(a) = 0 $$



            This is a modified Bessel equation and the solution is:



            $$ y(a)= c_1 I_0(a) + c_2 K_0(a);quad text{with }c_1,c_2in Bbb{R} $$



            The $I_0,K_0$ are the modified Bessel functions of the first and second kind with $alpha=0$, respectively. Then:



            $$ I^{(5)}(a)= c_1 sum_{m=0}^{infty}frac{1}{(m!)^2}Big(frac{a}{2}Big)^{2m} + c_2 int_0^{infty}e^{-acosh{theta}}dtheta $$



            If I integrate this with $a_0>0$ :



            begin{align}
            & I^{(4)}(a) - I^{(4)}(a_0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + c_2 int_{a_0}^{a}int_0^{infty}e^{-tcosh{theta}}dtheta dt \
            & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty}int_{a_0}^{a} e^{-tcosh{theta}} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
            & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-acosh(theta)} }{cosh(theta)} dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
            & I'''(a) - I'''(0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^a int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dtheta dt - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a \
            end{align}



            And $I'''(0)=-pi/2$, then:



            begin{align}
            & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^{infty}int_0^a frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a - pi/2 \
            & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
            + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} -1 }{cosh^2(theta)} Bigg) dtheta
            - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
            + I^{(4)}(a_0)a - pi/2 \
            end{align}



            Then $displaystyle int_0^{infty}frac{1}{cosh^2(theta)}dtheta =bigg[tanh(theta)bigg]_0^{infty}=1$ :



            begin{align}
            & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
            + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} }{cosh^2(theta)} Bigg) dtheta - c_2
            - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
            + I^{(4)}(a_0)a - pi/2 \
            end{align}





            In construction






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Impressive, for sure ! For the summation, the result seems to be $$frac{left(a^4+7 a^2+24right) I_1(a)-2 a left(a^2+6right) I_0(a)}{a^4}$$ For the remaining integral, I am more than stuck. Waiting for your update. Cheers.
              $endgroup$
              – Claude Leibovici
              Feb 4 at 11:48












            • $begingroup$
              Thank you, I am going to update this in a day of these
              $endgroup$
              – El borito
              Feb 5 at 2:28










            • $begingroup$
              @ClaudeLeibovici I was derivating $I^{(4)}$, so the answer was very bad, I am sorry
              $endgroup$
              – El borito
              Feb 8 at 3:28












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098264%2fintegral-arising-from-qed-vacuum-polarization%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Excluding numerical integration, I should do it using series expansion built at $x=0$. This would give
            $$left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}}=e^{-a}left(1+sum_{k=1}^n b_k , x^{2k}+O(x^{2k+2}) right)$$
            $$left(
            begin{array}{cc}
            k & b_k \
            1 & -frac{a}{2}-1 \
            2 & frac{a^2}{8}+frac{a}{8} \
            3 & -frac{a^3}{48}+frac{a^2}{16}+frac{a}{16} \
            4 & frac{a^4}{384}-frac{5 a^3}{192}+frac{5 a^2}{128}+frac{5 a}{128} \
            5 & -frac{a^5}{3840}+frac{a^4}{192}-frac{7 a^3}{256}+frac{7 a^2}{256}+frac{7
            a}{256} \
            6 & frac{a^6}{46080}-frac{11 a^5}{15360}+frac{23 a^4}{3072}-frac{7
            a^3}{256}+frac{21 a^2}{1024}+frac{21 a}{1024} \
            7 & -frac{a^7}{645120}+frac{7 a^6}{92160}-frac{a^5}{768}+frac{29
            a^4}{3072}-frac{55 a^3}{2048}+frac{33 a^2}{2048}+frac{33 a}{2048} \
            8 & frac{a^8}{10321920}-frac{17 a^7}{2580480}+frac{41 a^6}{245760}-frac{97
            a^5}{49152}+frac{1093 a^4}{98304}-frac{429 a^3}{16384}+frac{429
            a^2}{32768}+frac{429 a}{32768} \
            9 & -frac{a^9}{185794560}+frac{a^8}{2064384}-frac{5 a^7}{294912}+frac{29
            a^6}{98304}-frac{177 a^5}{65536}+frac{103 a^4}{8192}-frac{5005
            a^3}{196608}+frac{715 a^2}{65536}+frac{715 a}{65536}
            end{array}
            right)$$
            and integrate termwise to get
            $$int_0^1left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}},dx=e^{-a}left(1+sum_{k=1}^n frac {b_k}{2k+1} right)$$



            Limited to $n=9$, this would give the following results
            $$left(
            begin{array}{ccc}
            a & text{approximation} & text{exact} \
            0 & 0.6666666667 & 0.6666666667 \
            1 & 0.2123631665 & 0.2125607905 \
            2 & 0.07059996854 & 0.07043172674 \
            3 & 0.02383555255 & 0.02381813925 \
            4 & 0.008134307224 & 0.008161937294 \
            5 & 0.002812734609 & 0.002823407002 \
            6 & 0.0009851151098 & 0.0009836552422 \
            7 & 0.0003474991861 & 0.0003446169740 \
            8 & 0.0001224830345 & 0.0001212798570 \
            9 & 0.00004289847190 & 0.00004284093275 \
            10 & 0.00001493941267 & 0.00001518064585
            end{array}
            right)$$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Excluding numerical integration, I should do it using series expansion built at $x=0$. This would give
              $$left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}}=e^{-a}left(1+sum_{k=1}^n b_k , x^{2k}+O(x^{2k+2}) right)$$
              $$left(
              begin{array}{cc}
              k & b_k \
              1 & -frac{a}{2}-1 \
              2 & frac{a^2}{8}+frac{a}{8} \
              3 & -frac{a^3}{48}+frac{a^2}{16}+frac{a}{16} \
              4 & frac{a^4}{384}-frac{5 a^3}{192}+frac{5 a^2}{128}+frac{5 a}{128} \
              5 & -frac{a^5}{3840}+frac{a^4}{192}-frac{7 a^3}{256}+frac{7 a^2}{256}+frac{7
              a}{256} \
              6 & frac{a^6}{46080}-frac{11 a^5}{15360}+frac{23 a^4}{3072}-frac{7
              a^3}{256}+frac{21 a^2}{1024}+frac{21 a}{1024} \
              7 & -frac{a^7}{645120}+frac{7 a^6}{92160}-frac{a^5}{768}+frac{29
              a^4}{3072}-frac{55 a^3}{2048}+frac{33 a^2}{2048}+frac{33 a}{2048} \
              8 & frac{a^8}{10321920}-frac{17 a^7}{2580480}+frac{41 a^6}{245760}-frac{97
              a^5}{49152}+frac{1093 a^4}{98304}-frac{429 a^3}{16384}+frac{429
              a^2}{32768}+frac{429 a}{32768} \
              9 & -frac{a^9}{185794560}+frac{a^8}{2064384}-frac{5 a^7}{294912}+frac{29
              a^6}{98304}-frac{177 a^5}{65536}+frac{103 a^4}{8192}-frac{5005
              a^3}{196608}+frac{715 a^2}{65536}+frac{715 a}{65536}
              end{array}
              right)$$
              and integrate termwise to get
              $$int_0^1left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}},dx=e^{-a}left(1+sum_{k=1}^n frac {b_k}{2k+1} right)$$



              Limited to $n=9$, this would give the following results
              $$left(
              begin{array}{ccc}
              a & text{approximation} & text{exact} \
              0 & 0.6666666667 & 0.6666666667 \
              1 & 0.2123631665 & 0.2125607905 \
              2 & 0.07059996854 & 0.07043172674 \
              3 & 0.02383555255 & 0.02381813925 \
              4 & 0.008134307224 & 0.008161937294 \
              5 & 0.002812734609 & 0.002823407002 \
              6 & 0.0009851151098 & 0.0009836552422 \
              7 & 0.0003474991861 & 0.0003446169740 \
              8 & 0.0001224830345 & 0.0001212798570 \
              9 & 0.00004289847190 & 0.00004284093275 \
              10 & 0.00001493941267 & 0.00001518064585
              end{array}
              right)$$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Excluding numerical integration, I should do it using series expansion built at $x=0$. This would give
                $$left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}}=e^{-a}left(1+sum_{k=1}^n b_k , x^{2k}+O(x^{2k+2}) right)$$
                $$left(
                begin{array}{cc}
                k & b_k \
                1 & -frac{a}{2}-1 \
                2 & frac{a^2}{8}+frac{a}{8} \
                3 & -frac{a^3}{48}+frac{a^2}{16}+frac{a}{16} \
                4 & frac{a^4}{384}-frac{5 a^3}{192}+frac{5 a^2}{128}+frac{5 a}{128} \
                5 & -frac{a^5}{3840}+frac{a^4}{192}-frac{7 a^3}{256}+frac{7 a^2}{256}+frac{7
                a}{256} \
                6 & frac{a^6}{46080}-frac{11 a^5}{15360}+frac{23 a^4}{3072}-frac{7
                a^3}{256}+frac{21 a^2}{1024}+frac{21 a}{1024} \
                7 & -frac{a^7}{645120}+frac{7 a^6}{92160}-frac{a^5}{768}+frac{29
                a^4}{3072}-frac{55 a^3}{2048}+frac{33 a^2}{2048}+frac{33 a}{2048} \
                8 & frac{a^8}{10321920}-frac{17 a^7}{2580480}+frac{41 a^6}{245760}-frac{97
                a^5}{49152}+frac{1093 a^4}{98304}-frac{429 a^3}{16384}+frac{429
                a^2}{32768}+frac{429 a}{32768} \
                9 & -frac{a^9}{185794560}+frac{a^8}{2064384}-frac{5 a^7}{294912}+frac{29
                a^6}{98304}-frac{177 a^5}{65536}+frac{103 a^4}{8192}-frac{5005
                a^3}{196608}+frac{715 a^2}{65536}+frac{715 a}{65536}
                end{array}
                right)$$
                and integrate termwise to get
                $$int_0^1left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}},dx=e^{-a}left(1+sum_{k=1}^n frac {b_k}{2k+1} right)$$



                Limited to $n=9$, this would give the following results
                $$left(
                begin{array}{ccc}
                a & text{approximation} & text{exact} \
                0 & 0.6666666667 & 0.6666666667 \
                1 & 0.2123631665 & 0.2125607905 \
                2 & 0.07059996854 & 0.07043172674 \
                3 & 0.02383555255 & 0.02381813925 \
                4 & 0.008134307224 & 0.008161937294 \
                5 & 0.002812734609 & 0.002823407002 \
                6 & 0.0009851151098 & 0.0009836552422 \
                7 & 0.0003474991861 & 0.0003446169740 \
                8 & 0.0001224830345 & 0.0001212798570 \
                9 & 0.00004289847190 & 0.00004284093275 \
                10 & 0.00001493941267 & 0.00001518064585
                end{array}
                right)$$






                share|cite|improve this answer









                $endgroup$



                Excluding numerical integration, I should do it using series expansion built at $x=0$. This would give
                $$left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}}=e^{-a}left(1+sum_{k=1}^n b_k , x^{2k}+O(x^{2k+2}) right)$$
                $$left(
                begin{array}{cc}
                k & b_k \
                1 & -frac{a}{2}-1 \
                2 & frac{a^2}{8}+frac{a}{8} \
                3 & -frac{a^3}{48}+frac{a^2}{16}+frac{a}{16} \
                4 & frac{a^4}{384}-frac{5 a^3}{192}+frac{5 a^2}{128}+frac{5 a}{128} \
                5 & -frac{a^5}{3840}+frac{a^4}{192}-frac{7 a^3}{256}+frac{7 a^2}{256}+frac{7
                a}{256} \
                6 & frac{a^6}{46080}-frac{11 a^5}{15360}+frac{23 a^4}{3072}-frac{7
                a^3}{256}+frac{21 a^2}{1024}+frac{21 a}{1024} \
                7 & -frac{a^7}{645120}+frac{7 a^6}{92160}-frac{a^5}{768}+frac{29
                a^4}{3072}-frac{55 a^3}{2048}+frac{33 a^2}{2048}+frac{33 a}{2048} \
                8 & frac{a^8}{10321920}-frac{17 a^7}{2580480}+frac{41 a^6}{245760}-frac{97
                a^5}{49152}+frac{1093 a^4}{98304}-frac{429 a^3}{16384}+frac{429
                a^2}{32768}+frac{429 a}{32768} \
                9 & -frac{a^9}{185794560}+frac{a^8}{2064384}-frac{5 a^7}{294912}+frac{29
                a^6}{98304}-frac{177 a^5}{65536}+frac{103 a^4}{8192}-frac{5005
                a^3}{196608}+frac{715 a^2}{65536}+frac{715 a}{65536}
                end{array}
                right)$$
                and integrate termwise to get
                $$int_0^1left(1-x^2right) e^{-frac{a}{sqrt{1-x^2}}},dx=e^{-a}left(1+sum_{k=1}^n frac {b_k}{2k+1} right)$$



                Limited to $n=9$, this would give the following results
                $$left(
                begin{array}{ccc}
                a & text{approximation} & text{exact} \
                0 & 0.6666666667 & 0.6666666667 \
                1 & 0.2123631665 & 0.2125607905 \
                2 & 0.07059996854 & 0.07043172674 \
                3 & 0.02383555255 & 0.02381813925 \
                4 & 0.008134307224 & 0.008161937294 \
                5 & 0.002812734609 & 0.002823407002 \
                6 & 0.0009851151098 & 0.0009836552422 \
                7 & 0.0003474991861 & 0.0003446169740 \
                8 & 0.0001224830345 & 0.0001212798570 \
                9 & 0.00004289847190 & 0.00004284093275 \
                10 & 0.00001493941267 & 0.00001518064585
                end{array}
                right)$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Feb 3 at 8:28









                Claude LeiboviciClaude Leibovici

                126k1158135




                126k1158135























                    1












                    $begingroup$

                    With a subsitution $x=sin{t}$, $dx=cos{t},dt$:
                    $$I(a)=int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$
                    $$I(a)=int_0^{pi/2}(cos^3{t})e^{-a(sec{t})}dt$$



                    With the Feyman trick:



                    $$I'(a)=-int_0^{pi/2}(cos^2{t})e^{-a(sec{t})}dt$$
                    $$I''(a)=int_0^{pi/2}(cos{t})e^{-a(sec{t})}dt$$
                    $$I'''(a)=-int_0^{pi/2}e^{-a(sec{t})}dt$$
                    $$I^{(4)}(a)=int_0^{pi/2}sec{t}e^{-a(sec{t})}dt$$
                    $$I^{(5)}(a)=-int_0^{pi/2}e^{-a(sec{t})}sec^2{t}dt$$
                    $$I^{(6)}(a)=int_0^{pi/2}sec^3{t}e^{-a(sec{t})}dt$$



                    Obvioulsy $I''(0)=1$ and $I'''(0)=-pi/2$. Integrating by parts $I(a)$, with $u=cos^2(t)e^{-asec(t)},dt$ and $dv=cos(t)dt$, then $v=sin(t)$ and $du=Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt$ :



                    begin{align}
                    I(a) &= lim_{ tto pi/2^{-} } sin(t) cos^2(t)e^{-asec(t)} - int_{0}^{pi/2} sin(t) Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt \
                    I(a) &= 2int_{0}^{pi/2} sin^2(t)cos(t) e^{-asec(t)} dt + aint_{0}^{pi/2} sin^2(t) e^{-asec(t)} dt \
                    end{align}



                    Using the identity $sin^2(t)= 1- cos^2(t)$:



                    begin{align}
                    I(a) &= 2int_{0}^{pi/2} cos(t) e^{-asec(t)} dt - 2 int_{0}^{pi/2} cos^3(t) e^{-asec(t)} dt + a int_{0}^{pi/2} e^{-asec(t)} dt - a int_{0}^{pi/2} cos^2(t) e^{-asec(t)} dt \
                    I(a) &= 2 I''(a) - 2I(a) - aI''(a) + aI'(a) \
                    0 &= aI'''(a) - 2I''(a) - aI'(a) + 3I(a) label{1}tag{1}
                    end{align}



                    Remember that $I''(0)=1$, then if we evaluate $a=0$ in eqref{1}, we can demostrate that $I(0)=2/3$ . If you derivate eqref{1} :
                    $$
                    0 = aI^{(4)}(a) - I'''(a) -aI''(a) + 2I'(a) label{2}tag{2}
                    $$



                    If $lim_{ato 0^{+}}$ in eqref{2}, $I'(0)=-pi/4$ . Derivating eqref{2} :
                    $$
                    aI^{(5)}(a) - aI'''(a) + I''(a) = 0 label{3}tag{3}
                    $$

                    Derivating eqref{3} :
                    $$
                    aI^{(6)} + I^{(5)}(a) - a I^{(4)} = 0
                    $$

                    If $y(a)=I^{(4)}(a)$:
                    $$ a^2y''(a) + ay'(a) - a^2 y(a) = 0 $$



                    This is a modified Bessel equation and the solution is:



                    $$ y(a)= c_1 I_0(a) + c_2 K_0(a);quad text{with }c_1,c_2in Bbb{R} $$



                    The $I_0,K_0$ are the modified Bessel functions of the first and second kind with $alpha=0$, respectively. Then:



                    $$ I^{(5)}(a)= c_1 sum_{m=0}^{infty}frac{1}{(m!)^2}Big(frac{a}{2}Big)^{2m} + c_2 int_0^{infty}e^{-acosh{theta}}dtheta $$



                    If I integrate this with $a_0>0$ :



                    begin{align}
                    & I^{(4)}(a) - I^{(4)}(a_0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + c_2 int_{a_0}^{a}int_0^{infty}e^{-tcosh{theta}}dtheta dt \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty}int_{a_0}^{a} e^{-tcosh{theta}} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-acosh(theta)} }{cosh(theta)} dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I'''(a) - I'''(0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^a int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dtheta dt - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a \
                    end{align}



                    And $I'''(0)=-pi/2$, then:



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^{infty}int_0^a frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a - pi/2 \
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} -1 }{cosh^2(theta)} Bigg) dtheta
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}



                    Then $displaystyle int_0^{infty}frac{1}{cosh^2(theta)}dtheta =bigg[tanh(theta)bigg]_0^{infty}=1$ :



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} }{cosh^2(theta)} Bigg) dtheta - c_2
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}





                    In construction






                    share|cite|improve this answer











                    $endgroup$









                    • 1




                      $begingroup$
                      Impressive, for sure ! For the summation, the result seems to be $$frac{left(a^4+7 a^2+24right) I_1(a)-2 a left(a^2+6right) I_0(a)}{a^4}$$ For the remaining integral, I am more than stuck. Waiting for your update. Cheers.
                      $endgroup$
                      – Claude Leibovici
                      Feb 4 at 11:48












                    • $begingroup$
                      Thank you, I am going to update this in a day of these
                      $endgroup$
                      – El borito
                      Feb 5 at 2:28










                    • $begingroup$
                      @ClaudeLeibovici I was derivating $I^{(4)}$, so the answer was very bad, I am sorry
                      $endgroup$
                      – El borito
                      Feb 8 at 3:28
















                    1












                    $begingroup$

                    With a subsitution $x=sin{t}$, $dx=cos{t},dt$:
                    $$I(a)=int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$
                    $$I(a)=int_0^{pi/2}(cos^3{t})e^{-a(sec{t})}dt$$



                    With the Feyman trick:



                    $$I'(a)=-int_0^{pi/2}(cos^2{t})e^{-a(sec{t})}dt$$
                    $$I''(a)=int_0^{pi/2}(cos{t})e^{-a(sec{t})}dt$$
                    $$I'''(a)=-int_0^{pi/2}e^{-a(sec{t})}dt$$
                    $$I^{(4)}(a)=int_0^{pi/2}sec{t}e^{-a(sec{t})}dt$$
                    $$I^{(5)}(a)=-int_0^{pi/2}e^{-a(sec{t})}sec^2{t}dt$$
                    $$I^{(6)}(a)=int_0^{pi/2}sec^3{t}e^{-a(sec{t})}dt$$



                    Obvioulsy $I''(0)=1$ and $I'''(0)=-pi/2$. Integrating by parts $I(a)$, with $u=cos^2(t)e^{-asec(t)},dt$ and $dv=cos(t)dt$, then $v=sin(t)$ and $du=Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt$ :



                    begin{align}
                    I(a) &= lim_{ tto pi/2^{-} } sin(t) cos^2(t)e^{-asec(t)} - int_{0}^{pi/2} sin(t) Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt \
                    I(a) &= 2int_{0}^{pi/2} sin^2(t)cos(t) e^{-asec(t)} dt + aint_{0}^{pi/2} sin^2(t) e^{-asec(t)} dt \
                    end{align}



                    Using the identity $sin^2(t)= 1- cos^2(t)$:



                    begin{align}
                    I(a) &= 2int_{0}^{pi/2} cos(t) e^{-asec(t)} dt - 2 int_{0}^{pi/2} cos^3(t) e^{-asec(t)} dt + a int_{0}^{pi/2} e^{-asec(t)} dt - a int_{0}^{pi/2} cos^2(t) e^{-asec(t)} dt \
                    I(a) &= 2 I''(a) - 2I(a) - aI''(a) + aI'(a) \
                    0 &= aI'''(a) - 2I''(a) - aI'(a) + 3I(a) label{1}tag{1}
                    end{align}



                    Remember that $I''(0)=1$, then if we evaluate $a=0$ in eqref{1}, we can demostrate that $I(0)=2/3$ . If you derivate eqref{1} :
                    $$
                    0 = aI^{(4)}(a) - I'''(a) -aI''(a) + 2I'(a) label{2}tag{2}
                    $$



                    If $lim_{ato 0^{+}}$ in eqref{2}, $I'(0)=-pi/4$ . Derivating eqref{2} :
                    $$
                    aI^{(5)}(a) - aI'''(a) + I''(a) = 0 label{3}tag{3}
                    $$

                    Derivating eqref{3} :
                    $$
                    aI^{(6)} + I^{(5)}(a) - a I^{(4)} = 0
                    $$

                    If $y(a)=I^{(4)}(a)$:
                    $$ a^2y''(a) + ay'(a) - a^2 y(a) = 0 $$



                    This is a modified Bessel equation and the solution is:



                    $$ y(a)= c_1 I_0(a) + c_2 K_0(a);quad text{with }c_1,c_2in Bbb{R} $$



                    The $I_0,K_0$ are the modified Bessel functions of the first and second kind with $alpha=0$, respectively. Then:



                    $$ I^{(5)}(a)= c_1 sum_{m=0}^{infty}frac{1}{(m!)^2}Big(frac{a}{2}Big)^{2m} + c_2 int_0^{infty}e^{-acosh{theta}}dtheta $$



                    If I integrate this with $a_0>0$ :



                    begin{align}
                    & I^{(4)}(a) - I^{(4)}(a_0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + c_2 int_{a_0}^{a}int_0^{infty}e^{-tcosh{theta}}dtheta dt \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty}int_{a_0}^{a} e^{-tcosh{theta}} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-acosh(theta)} }{cosh(theta)} dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I'''(a) - I'''(0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^a int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dtheta dt - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a \
                    end{align}



                    And $I'''(0)=-pi/2$, then:



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^{infty}int_0^a frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a - pi/2 \
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} -1 }{cosh^2(theta)} Bigg) dtheta
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}



                    Then $displaystyle int_0^{infty}frac{1}{cosh^2(theta)}dtheta =bigg[tanh(theta)bigg]_0^{infty}=1$ :



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} }{cosh^2(theta)} Bigg) dtheta - c_2
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}





                    In construction






                    share|cite|improve this answer











                    $endgroup$









                    • 1




                      $begingroup$
                      Impressive, for sure ! For the summation, the result seems to be $$frac{left(a^4+7 a^2+24right) I_1(a)-2 a left(a^2+6right) I_0(a)}{a^4}$$ For the remaining integral, I am more than stuck. Waiting for your update. Cheers.
                      $endgroup$
                      – Claude Leibovici
                      Feb 4 at 11:48












                    • $begingroup$
                      Thank you, I am going to update this in a day of these
                      $endgroup$
                      – El borito
                      Feb 5 at 2:28










                    • $begingroup$
                      @ClaudeLeibovici I was derivating $I^{(4)}$, so the answer was very bad, I am sorry
                      $endgroup$
                      – El borito
                      Feb 8 at 3:28














                    1












                    1








                    1





                    $begingroup$

                    With a subsitution $x=sin{t}$, $dx=cos{t},dt$:
                    $$I(a)=int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$
                    $$I(a)=int_0^{pi/2}(cos^3{t})e^{-a(sec{t})}dt$$



                    With the Feyman trick:



                    $$I'(a)=-int_0^{pi/2}(cos^2{t})e^{-a(sec{t})}dt$$
                    $$I''(a)=int_0^{pi/2}(cos{t})e^{-a(sec{t})}dt$$
                    $$I'''(a)=-int_0^{pi/2}e^{-a(sec{t})}dt$$
                    $$I^{(4)}(a)=int_0^{pi/2}sec{t}e^{-a(sec{t})}dt$$
                    $$I^{(5)}(a)=-int_0^{pi/2}e^{-a(sec{t})}sec^2{t}dt$$
                    $$I^{(6)}(a)=int_0^{pi/2}sec^3{t}e^{-a(sec{t})}dt$$



                    Obvioulsy $I''(0)=1$ and $I'''(0)=-pi/2$. Integrating by parts $I(a)$, with $u=cos^2(t)e^{-asec(t)},dt$ and $dv=cos(t)dt$, then $v=sin(t)$ and $du=Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt$ :



                    begin{align}
                    I(a) &= lim_{ tto pi/2^{-} } sin(t) cos^2(t)e^{-asec(t)} - int_{0}^{pi/2} sin(t) Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt \
                    I(a) &= 2int_{0}^{pi/2} sin^2(t)cos(t) e^{-asec(t)} dt + aint_{0}^{pi/2} sin^2(t) e^{-asec(t)} dt \
                    end{align}



                    Using the identity $sin^2(t)= 1- cos^2(t)$:



                    begin{align}
                    I(a) &= 2int_{0}^{pi/2} cos(t) e^{-asec(t)} dt - 2 int_{0}^{pi/2} cos^3(t) e^{-asec(t)} dt + a int_{0}^{pi/2} e^{-asec(t)} dt - a int_{0}^{pi/2} cos^2(t) e^{-asec(t)} dt \
                    I(a) &= 2 I''(a) - 2I(a) - aI''(a) + aI'(a) \
                    0 &= aI'''(a) - 2I''(a) - aI'(a) + 3I(a) label{1}tag{1}
                    end{align}



                    Remember that $I''(0)=1$, then if we evaluate $a=0$ in eqref{1}, we can demostrate that $I(0)=2/3$ . If you derivate eqref{1} :
                    $$
                    0 = aI^{(4)}(a) - I'''(a) -aI''(a) + 2I'(a) label{2}tag{2}
                    $$



                    If $lim_{ato 0^{+}}$ in eqref{2}, $I'(0)=-pi/4$ . Derivating eqref{2} :
                    $$
                    aI^{(5)}(a) - aI'''(a) + I''(a) = 0 label{3}tag{3}
                    $$

                    Derivating eqref{3} :
                    $$
                    aI^{(6)} + I^{(5)}(a) - a I^{(4)} = 0
                    $$

                    If $y(a)=I^{(4)}(a)$:
                    $$ a^2y''(a) + ay'(a) - a^2 y(a) = 0 $$



                    This is a modified Bessel equation and the solution is:



                    $$ y(a)= c_1 I_0(a) + c_2 K_0(a);quad text{with }c_1,c_2in Bbb{R} $$



                    The $I_0,K_0$ are the modified Bessel functions of the first and second kind with $alpha=0$, respectively. Then:



                    $$ I^{(5)}(a)= c_1 sum_{m=0}^{infty}frac{1}{(m!)^2}Big(frac{a}{2}Big)^{2m} + c_2 int_0^{infty}e^{-acosh{theta}}dtheta $$



                    If I integrate this with $a_0>0$ :



                    begin{align}
                    & I^{(4)}(a) - I^{(4)}(a_0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + c_2 int_{a_0}^{a}int_0^{infty}e^{-tcosh{theta}}dtheta dt \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty}int_{a_0}^{a} e^{-tcosh{theta}} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-acosh(theta)} }{cosh(theta)} dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I'''(a) - I'''(0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^a int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dtheta dt - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a \
                    end{align}



                    And $I'''(0)=-pi/2$, then:



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^{infty}int_0^a frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a - pi/2 \
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} -1 }{cosh^2(theta)} Bigg) dtheta
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}



                    Then $displaystyle int_0^{infty}frac{1}{cosh^2(theta)}dtheta =bigg[tanh(theta)bigg]_0^{infty}=1$ :



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} }{cosh^2(theta)} Bigg) dtheta - c_2
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}





                    In construction






                    share|cite|improve this answer











                    $endgroup$



                    With a subsitution $x=sin{t}$, $dx=cos{t},dt$:
                    $$I(a)=int_0^1(1-x^2)e^{-a(1-x^2)^{-1/2}}dx$$
                    $$I(a)=int_0^{pi/2}(cos^3{t})e^{-a(sec{t})}dt$$



                    With the Feyman trick:



                    $$I'(a)=-int_0^{pi/2}(cos^2{t})e^{-a(sec{t})}dt$$
                    $$I''(a)=int_0^{pi/2}(cos{t})e^{-a(sec{t})}dt$$
                    $$I'''(a)=-int_0^{pi/2}e^{-a(sec{t})}dt$$
                    $$I^{(4)}(a)=int_0^{pi/2}sec{t}e^{-a(sec{t})}dt$$
                    $$I^{(5)}(a)=-int_0^{pi/2}e^{-a(sec{t})}sec^2{t}dt$$
                    $$I^{(6)}(a)=int_0^{pi/2}sec^3{t}e^{-a(sec{t})}dt$$



                    Obvioulsy $I''(0)=1$ and $I'''(0)=-pi/2$. Integrating by parts $I(a)$, with $u=cos^2(t)e^{-asec(t)},dt$ and $dv=cos(t)dt$, then $v=sin(t)$ and $du=Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt$ :



                    begin{align}
                    I(a) &= lim_{ tto pi/2^{-} } sin(t) cos^2(t)e^{-asec(t)} - int_{0}^{pi/2} sin(t) Big[-2sin(t)cos(t)e^{-asec(t)} - asin(t)e^{-asec(t)} Big] dt \
                    I(a) &= 2int_{0}^{pi/2} sin^2(t)cos(t) e^{-asec(t)} dt + aint_{0}^{pi/2} sin^2(t) e^{-asec(t)} dt \
                    end{align}



                    Using the identity $sin^2(t)= 1- cos^2(t)$:



                    begin{align}
                    I(a) &= 2int_{0}^{pi/2} cos(t) e^{-asec(t)} dt - 2 int_{0}^{pi/2} cos^3(t) e^{-asec(t)} dt + a int_{0}^{pi/2} e^{-asec(t)} dt - a int_{0}^{pi/2} cos^2(t) e^{-asec(t)} dt \
                    I(a) &= 2 I''(a) - 2I(a) - aI''(a) + aI'(a) \
                    0 &= aI'''(a) - 2I''(a) - aI'(a) + 3I(a) label{1}tag{1}
                    end{align}



                    Remember that $I''(0)=1$, then if we evaluate $a=0$ in eqref{1}, we can demostrate that $I(0)=2/3$ . If you derivate eqref{1} :
                    $$
                    0 = aI^{(4)}(a) - I'''(a) -aI''(a) + 2I'(a) label{2}tag{2}
                    $$



                    If $lim_{ato 0^{+}}$ in eqref{2}, $I'(0)=-pi/4$ . Derivating eqref{2} :
                    $$
                    aI^{(5)}(a) - aI'''(a) + I''(a) = 0 label{3}tag{3}
                    $$

                    Derivating eqref{3} :
                    $$
                    aI^{(6)} + I^{(5)}(a) - a I^{(4)} = 0
                    $$

                    If $y(a)=I^{(4)}(a)$:
                    $$ a^2y''(a) + ay'(a) - a^2 y(a) = 0 $$



                    This is a modified Bessel equation and the solution is:



                    $$ y(a)= c_1 I_0(a) + c_2 K_0(a);quad text{with }c_1,c_2in Bbb{R} $$



                    The $I_0,K_0$ are the modified Bessel functions of the first and second kind with $alpha=0$, respectively. Then:



                    $$ I^{(5)}(a)= c_1 sum_{m=0}^{infty}frac{1}{(m!)^2}Big(frac{a}{2}Big)^{2m} + c_2 int_0^{infty}e^{-acosh{theta}}dtheta $$



                    If I integrate this with $a_0>0$ :



                    begin{align}
                    & I^{(4)}(a) - I^{(4)}(a_0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + c_2 int_{a_0}^{a}int_0^{infty}e^{-tcosh{theta}}dtheta dt \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty}int_{a_0}^{a} e^{-tcosh{theta}} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I^{(4)}(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+1}}{2m+1} + c_2 int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-acosh(theta)} }{cosh(theta)} dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1} + I^{(4)}(a_0) \
                    & I'''(a) - I'''(0) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^a int_0^{infty} frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dtheta dt - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a \
                    end{align}



                    And $I'''(0)=-pi/2$, then:



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)} + c_2 int_0^{infty}int_0^a frac{ e^{-a_0cosh(theta)} - e^{-tcosh(theta)} }{cosh(theta)} dt dtheta - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a + I^{(4)}(a_0)a - pi/2 \
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} -1 }{cosh^2(theta)} Bigg) dtheta
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}



                    Then $displaystyle int_0^{infty}frac{1}{cosh^2(theta)}dtheta =bigg[tanh(theta)bigg]_0^{infty}=1$ :



                    begin{align}
                    & I'''(a) = c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a^{2m+2}}{(2m+2)(2m+1)}
                    + c_2 int_0^{infty}Bigg( frac{e^{-a_0cosh(theta)}a}{cosh(theta)} + frac{ e^{-acosh(theta)} }{cosh^2(theta)} Bigg) dtheta - c_2
                    - c_1 sum_{m=0}^{infty}frac{1}{(m!)^2 4^m }frac{a_0^{2m+1}}{2m+1}a
                    + I^{(4)}(a_0)a - pi/2 \
                    end{align}





                    In construction







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Feb 9 at 20:24

























                    answered Feb 3 at 8:54









                    El boritoEl borito

                    664216




                    664216








                    • 1




                      $begingroup$
                      Impressive, for sure ! For the summation, the result seems to be $$frac{left(a^4+7 a^2+24right) I_1(a)-2 a left(a^2+6right) I_0(a)}{a^4}$$ For the remaining integral, I am more than stuck. Waiting for your update. Cheers.
                      $endgroup$
                      – Claude Leibovici
                      Feb 4 at 11:48












                    • $begingroup$
                      Thank you, I am going to update this in a day of these
                      $endgroup$
                      – El borito
                      Feb 5 at 2:28










                    • $begingroup$
                      @ClaudeLeibovici I was derivating $I^{(4)}$, so the answer was very bad, I am sorry
                      $endgroup$
                      – El borito
                      Feb 8 at 3:28














                    • 1




                      $begingroup$
                      Impressive, for sure ! For the summation, the result seems to be $$frac{left(a^4+7 a^2+24right) I_1(a)-2 a left(a^2+6right) I_0(a)}{a^4}$$ For the remaining integral, I am more than stuck. Waiting for your update. Cheers.
                      $endgroup$
                      – Claude Leibovici
                      Feb 4 at 11:48












                    • $begingroup$
                      Thank you, I am going to update this in a day of these
                      $endgroup$
                      – El borito
                      Feb 5 at 2:28










                    • $begingroup$
                      @ClaudeLeibovici I was derivating $I^{(4)}$, so the answer was very bad, I am sorry
                      $endgroup$
                      – El borito
                      Feb 8 at 3:28








                    1




                    1




                    $begingroup$
                    Impressive, for sure ! For the summation, the result seems to be $$frac{left(a^4+7 a^2+24right) I_1(a)-2 a left(a^2+6right) I_0(a)}{a^4}$$ For the remaining integral, I am more than stuck. Waiting for your update. Cheers.
                    $endgroup$
                    – Claude Leibovici
                    Feb 4 at 11:48






                    $begingroup$
                    Impressive, for sure ! For the summation, the result seems to be $$frac{left(a^4+7 a^2+24right) I_1(a)-2 a left(a^2+6right) I_0(a)}{a^4}$$ For the remaining integral, I am more than stuck. Waiting for your update. Cheers.
                    $endgroup$
                    – Claude Leibovici
                    Feb 4 at 11:48














                    $begingroup$
                    Thank you, I am going to update this in a day of these
                    $endgroup$
                    – El borito
                    Feb 5 at 2:28




                    $begingroup$
                    Thank you, I am going to update this in a day of these
                    $endgroup$
                    – El borito
                    Feb 5 at 2:28












                    $begingroup$
                    @ClaudeLeibovici I was derivating $I^{(4)}$, so the answer was very bad, I am sorry
                    $endgroup$
                    – El borito
                    Feb 8 at 3:28




                    $begingroup$
                    @ClaudeLeibovici I was derivating $I^{(4)}$, so the answer was very bad, I am sorry
                    $endgroup$
                    – El borito
                    Feb 8 at 3:28


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098264%2fintegral-arising-from-qed-vacuum-polarization%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith